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I. MODIFIED COOKE LIPID MODEL

The coarse-grained lipid model employed in this work, as illustrated in the main text Fig. 2, is a modified version
of the “flip-fixed” model published by the present authors [1], which is itself a modification of the original Cooke
lipid model [2, 3]. In this work we made two modifications to the model, the first of which is that each of the four
constituent beads of a lipid is scaled according to an angle parameter α which determines the tapered shape of the
lipid via

bH = b0 (1 + 3 sinα)−∆

bT1 = b0 (1 + sinα)

bT2 = b0 (1− sinα)

bT3 = b0 (1− 3 sinα) . (SI 1)

In the above equations, the various bX are the Lennard-Jones self-interaction size parameters for each bead as in
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with H denoting the head bead and T1-3 denoting the 3 tail beads in the model. The original Cooke lipid bead
size is b0 = 1.0σ (σ being the coarse-grained length unit). Of note is that in the original Cooke model, the head
bead is slightly smaller than the tails, having a size of bH = 0.95σ. Thus the offset ∆ = 0.05σ above serves to
bring our modified bead sizes into agreement with the original model at α = 0. The cross-type Lennard-Jones size
parameters are all chosen according to the Lorentz mixing rule bij = (bii + bjj)/2. This is the second difference from
the previous versions of the Cooke model, as the head-tail interactions originally deviated slightly from the Lorentz
rule (bHead−Tail = 0.95σ rather than 0.975σ). This wrinkle has been removed for simplicity, and was not found to
impact the formation of stable fluid lipid bilayers.

This newly redefined model introduces a spectrum of lipids with varying intrinsic curvature preference, but also
impacts other properties of the resultant bilayers. In order to characterize this model, various benchmark simulations
were carried out in order to measure important membrane properties. The results are summarized in Fig. SI 1 and
Table SI 1.

The area per lipid was measured from in-plane-isotropic NPT simulations of flat bilayers with 128 lipids per leaflet
(256 total) at zero tension, and dividing the equilibrium average box area (projected membrane area) by 128. The
small size of these simulations minimizes the effect of undulations on the measured area. The area modulus KA,m was
found from a linear fit to the surface tension measured from a series of 4 NVT membrane simulations (256 lipids) for
each lipid shape, at fixed area strains of 0%, 1%, 2%, and 3%. The bilayer bending modulus κ was measured using
the buckling protocol [4, 5], fitting to a stress-strain relation which includes curvature softening [6]. Each κ fit was
determined from the results of 4 simulations corresponding to dimensionless buckling strains γ = 10%, 20%, 30%, and
40%. For the lipid taper angles α investigated here (−2◦ through 0.5◦), the number of lipids in the buckle simulations
were 1254, 1276, 1292, 1298, 1298, and 1290 respectively. For each α the number of lipids in simulation was the same
across all buckling strains γ. The monolayer bending modulus κm is taken to be κ/2.

Taper Angle α −2◦ −1.5◦ −1◦ −0.5◦ 0◦ 0.5◦

Area per Lipid [σ2] 1.276(3) 1.254(4) 1.240(9) 1.233(2) 1.234(3) 1.241(4)

Area Modulus KA,m [kBT/σ
2] 9.6± 0.3 10.8± 0.3 11.0± 0.3 11.8± 0.3 12.8± 0.3 12.8± 0.3

Bending Modulus κm [kBT ] 9.9± 1.2 13.2± 0.9 13.6± 1.0 12.7± 1.0 9.7± 0.9 6.8± 0.8

TABLE SI 1. Relevant material properties of the modified-shape Cooke lipids. Same data plotted in Fig. SI 1
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FIG. SI 1. Material properties of lipids in the shape-modified Cooke model employed in this work. From left to right, the
plotted data are the area per lipid, monolayer area compressibility modulus KA,m, and monolayer bending modulus κm. The
data are plotted against the corresponding taper angle that defines the lipid shape according to eqn. SI 1. The two red data
points in the area per lipid plot indicate lipid shapes which were not used due to unreliable suppression of flip-flop, and these
taper angles are not included in the right two plots. All measurements were made at kBT = 1.5 ε. Errors of the mean in the
left plot are smaller than the point markers.

The fluid-gel transition temperature also varies with α. Although we did not quantify this temperature precisely for
each lipid shape, we found all those employed here to be in the fluid phase at kBT = 1.5 ε. All the material properties
reported here are for symmetric single-component membranes at this temperature.

II. STICKY TAPE IMPLEMENTATION FOR COOKE MEMBRANES

The Cooke lipid-compatible sticky tape consists of two layers of coarse-grained beads arranged in a square lattice,
as depicted in Fig. 2 of the main text. In the implementation used throughout this work, each bead is bonded to its
nearest neighbors and next-nearest neighbors (see Fig. SI 2) by FENE bonds,

UFENE(r) = −1
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, (SI 2)

with kbond = 100 ε/σ and ∆r∞ = 0.5 ε. The value of rmin depends on whether the bond in question is between the
nearest neighbor or the diagonal next nearest neighbor, as depicted in Fig. SI 2. For nearest-neighbor, rmin = r0 ≈
0.97σ, with next-nearest neighbor gaining a factor of

√
2. The exact size of the tape is dependent on the desired

simulation geometry, and for all the cases in this work, the box length in the direction of continuous membrane
periodicity (into the page in Fig. 2 of the main text) is Ly = 16σ. With this in mind, each layer of the tape has 16
beads in the direction of membrane periodicity (the length of the tape) and 6 beads in the direction normal to the
membrane (the height of the tape), for a total of 96 beads per layer and 192 per tape.

To make the adhesive layer of beads stick to the lipid tails, the tape beads interact with the lipid tail beads via a

r0

r0
√
2

FIG. SI 2. Diagram of the structural bonds which hold together the sticky tape and keep it relatively rigid. Black spheres
are sticky tape beads, red lines are FENE bonds (Eqn. SI 2). This bond structure is present both inter- and intra-layer. The
indicated lengths give the rest lengths of the corresponding bonded interactions.
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FIG. SI 3. Initial configuration of a Cooke membrane simulation with sticky tape. Blue and yellow beads belong to Cooke
lipids; grey, purple, and orange beads comprise the sticky tapes. The membrane is periodic in the y-direction. Snapshot
rendered using VMD [8].

Lennard-Jones cosine-squared potential (the same cohesive potential used in the lipid force field, see [3]),

ULJcos2(r) =


ULJ(r) , r < rmin

−ε cos2
[

π
2w (r − rmin)

]
, rmin ≤ r ≤ rmin + w

0 , r > rmin + w

. (SI 3)

Here rmin = 21/6b is the minimum of the Lennard-Jones potential and w is the tunable parameter which determines the
range of the attractive portion of the potential. For the sticky beads, w = 1.6σ, identical to the lipid tail potentials.
The b parameter is determined in the same way as it was above for the tapered lipid beads, using bii = 1σ as the
effect sticky tape self-interaction size parameter. The top 3 rows of adhesive beads have this attractive potential only
for the tail beads of the upper-leaflet lipids, and similarly for the lower beads and lipid tails. For the cross-interactions
(upper adhesive beads with lower lipid tails, and vice-versa), a purely repulsive Weeks-Chandler-Anderson potential
[7] is employed with b determined in the same manner. The same repulsive potential also acts between the sticky
tape and all lipid head beads. The second layer of the sticky tape consists of beads which interact with all lipid beads
according to the same kind of repulsive interaction as well.

These precise specifications are simply the ones that we used for all of the simulation. The authors have also success-
fully implemented sticky tapes using standard harmonic spring potentials rather than FENE bonds, as well as simply
bonding every tape bead to every other tape bead within some cutoff distance, rather than the precisely pre-defined
scheme of Fig. SI 2. We have provided example simulation files for ESPResSo which implement both of these versions of
the sticky tape in conjunction with Cooke lipid membranes, found in stickytape.py and stickytape autobond.py.

III. DERIVATION OF EQN. (9)

For the case of identical lipids in both leaflets, combining Eqns. (5) and (6) from the main text gives

K⋆
0 =

κnl(A0+ −A0−)

zn(A0+ +A0−)(κ+ κnl)
. (SI 4)

The monolayer rest areas are assumed to be given by A0± = a0N±, where a0 is the rest area per lipid. In terms
of the asymmetry parameter δn = (N+ − N−)/(N+ + N−) and average number of lipids between the two leaflets
N̄ = (N+ + N−)/2, they can also be expressed as A0± = a0N̄(1 ± δn). Substituting this into the expression given
above results in the cancellation of N̄ , which, along with the definition κnl = z2nKA, yields Eqn. (9) of the main text.

IV. LATERAL STRETCHING MODULUS PROFILE MEASUREMENT

As laid out by Campelo, et al. [9] the lateral stretching modulus profile can be approximately measured by
running several small, flat, PBC simulations at increasing area strain εA. By calculating the lateral stress profile
σ(z) = σ||(z)− σ⊥(z) in each simulation, one can numerically approximate ∂σ(z)/∂εA = λ(z).
However, there is a rather subtle step in this analysis which is only mentioned as a passing sentence in ref. [9].

Since each successive simulation is at higher area strain, the membrane slightly thins in response. As such, one
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FIG. SI 4. Left: Nonuniform z scaling factors cε(z) for area-strained simulations of an α = 0.5◦ Cooke lipid membrane. Right:
Lateral stress profile differences ∆σε(z) = σε(z/cε(z))− σ0(z).

cannot directly compare σ(z) profiles from simulations at different area strains; each stress profile from a simulation
with ε > 0 must be scaled such that the membrane thicknesses match, so that we are comparing σ(z) at equivalent
material points within the membrane. For more finely resolved simulation models with explicit solvent (such as the
Martini model used in their study), this is perhaps a straightforward step, as lipid membranes are fairly uniformly
incompressible [10], and thus a uniform scaling to match a particular thickness makes sense. This is not so for the
Cooke model. As the membrane is stretched, the mean location of each lipid bead varies in a highly non-uniform way,
as shown in Fig. SI 4. With this in mind, for each CG bead we calculate cε = z/zε, the ratio of the mean position of
the given bead in the tensionless configuration to its position in the ε-strained configuration. We then define cε(z) as
the linear interpolation of these points, shown as the dotted lines in the first plot of Fig. SI 4. We can then use this
scale factor function to calculate the difference between stress profiles measured in simulations at different strains,

∆σε(z) = σε(z/cε(z))− σ0(z), (SI 5)

as shown in the second plot of Fig. SI 4. Notice that features such as peaks and troughs are roughly aligned in this
plot; this is not so without the scaling function. Attempting the analysis using a uniform scaling rather than the
more careful scaling done here results in seemingly implausible stretching modulus profiles with significant regions of
negative stretching modulus, as well as a very large disagreement between the two measurement methods for zN .

V. HEXATIC ORDER PARAMETER DISTRIBUTIONS

The magnitude of the hexatic order parameter

ψ6 =
1

N

N∑
k=1

e6iθk (SI 6)

is a highly informative order parameter for membrane phase transitions. Here N is the number of nearest neighbors
of a given lipid and θk is the angle to each nearest neighbor from some fixed axis. |ψ6| varies between 0 and 1, with
1 corresponding to a perfectly crystalline arrangement. Fig. SI 5 shows examples of |ψ6| histograms measured in flat
PBC simulations below and above the main (fluid-gel) phase transition. Fig. 6 in the main text demonstrates that
the ensemble average ⟨|ψ6|⟩ remains unchanged from its equilibrium PBC value in the bulk phase sufficiently far from
the membrane edge. This figure only reports data from one flat symmetric membrane simulation, and additionally
only shows the mean order parameter rather than the equilibrium distribution.

We wish to demonstrate more thoroughly that the membrane order in the bulk phase is relatively unperturbed by
the introduction of adhesive patches and curvature. To this end, for each open-edge adhesive simulation, we carried
out a corresponding flat PBC simulation in which the area strain in each leaflet approximately matches that in the
open-edge simulation. The details of both the patched-edge simulations and the area-strain-matched simulations are
given in Table SI 2. Fig. SI 6 displays the measured |ψ6| histograms from the bulk phase (discarding data from
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FIG. SI 5. Empirical |ψ6| order parameter distributions demonstrating the qualitative difference in distribution for fluid and
gel states. Both distributions come from a tensionless symmetric α = 0◦ lipid membrane under periodic boundary conditions.
Gel data taken at kBT ≈ 1.25 ε, fluid data taken at kBT ≈ 1.5 ε.

the membrane edges) in each simulation, with the results from the open-edge (blue data) and corresponding strain-
matched (yellow data) systems superimposed on one another. For all corresponding simulations, the mean order
parameter is the same within error (not shown), and indeed the distributions themselves are nearly imperceptibly
different by eye (the regions which appear green in the plots are overlap of the blue and orange distributions). Rather
than delve into precise geometric statistical measures of distance between these distributions, we will simply remark
that bulk membrane structure appears to agree between patched-open-edge and fully-PBC simulations to a very high
degree. Moreover, comparison of the |ψ6| distributions in Fig. SI 6 with those shown in Fig. SI 5 confirms that both
leaflets remain in the fluid phase for all state points investigated in this work.
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α+ = α− = 0◦

N+ 512 522 532 543 553

N− 512 502 492 481 471

a+ [σ2] 1.2339(3) 1.2249(3) 1.2167(3) 1.2081(3) 1.2017(3)

a− [σ2] 1.2342(3) 1.2437(3) 1.2541(3) 1.2665(3) 1.2777(4)

Lm [σ] 25.136 25.238 25.343 25.469 25.571

Nm
+ 512 520 528 537 544

Nm
− 512 512 512 512 512

α+ = −1◦, α− = 0.5◦

N+ 512 522 532 543 553

N− 512 502 492 481 471

a+ [σ2] 1.2018(4) 1.1976(3) 1.1937(4) 1.1912(5) 1.1894(4)

a− [σ2] 1.2801(7) 1.2933(8) 1.3067(12) 1.3229(14) 1.3394(21)

Lm [σ] 25.595 25.735 25.858 26.032 26.195

Nm
+ 545 553 560 569 577

Nm
− 512 512 512 512 512

α+ = 0◦, α− = −1.5◦

N+ 512 502 492 481 471

N− 512 522 532 543 553

a+ [σ2] 1.2817(5) 1.2945(6) 1.3088(7) 1.3243(10) 1.3393(12)

a− [σ2] 1.2080(3) 1.2056(4) 1.2038(3) 1.2030(4) 1.2031(5)

Lm [σ] 25.614 25.749 25.8925 26.045 26.188

Nm
+ 512 512 512 512 512

Nm
− 543 550 557 564 570

TABLE SI 2. Details of the three adhesive-patched membrane strip simulations and the equivalently-area-strained flat NVT
PBC simulations. The top part of each table details the simulations with adhesive patches, with the bottom part of each table
giving the cubic box dimension Lm and number of lipids Nm

± in the upper and lower leaflet of the strain-matched simulation.
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FIG. SI 6. Hexatic order parameter |ψ6| distributions from adhesive-patched open edge simulations compared against corre-
sponding distributions from flat PBC simulations. The data from the three simulation series are presented in the same order
as in Table SI 2. The inset axes show a zoomed-in view of the difference of the histograms, with ymin = −0.06 and ymax = 0.06
(y-axis scaling of ∼ 4×).


