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Asymmetric Membrane “Sticky Tape” Enables Simultaneous Relaxation of Area and
Curvature in Simulation

Samuel L. Foley∗

Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA and
T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA†

Markus Deserno
Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA

Biological lipid membranes are generally asymmetric, not only with respect to the composition of
the two membrane leaflets, but also with respect to the state of mechanical stress on the two sides.
Computer simulations of such asymmetric membranes pose unique challenges with respect to the
choice of boundary conditions and ensemble in which such simulations are to be carried out. Here
we demonstrate an alternative to the usual choice of fully periodic boundary conditions (PBC): the
membrane is only periodic in one direction, with free edges running parallel to the single direction
of periodicity. In order to maintain bilayer asymmetry under these conditions, nano-scale “sticky
tapes” are adhered to the membrane edges in order to prevent lipid flip-flop across the otherwise
open edge. In such semi-periodic simulations, the bilayer is free to choose both its area and mean
curvature, allowing for minimization of the bilayer elastic free energy. We implement these principles
in a highly coarse-grained model and show how even the simplest examples of such simulations can
reveal useful membrane elastic properties, such as the location of the monolayer neutral surface.

I. INTRODUCTION

The basic building block of biological membranes is the
lipid bilayer [1]. The compositional asymmetry of such
bio-membranes, that is, the difference in lipid species
found in the outer and inner leaflets, has been studied
for half a century [2] and is widely conserved through-
out Eukarya [3–5]. More recently, it has been shown
that human erythrocyte plasma membranes (and likely
many other mammalian plasma membranes) are highly
asymmetric in terms of overall phospholipid abundance
as well [6]. Going along with this, a different kind of
asymmetry—that of a mechanical stress difference, or
differential stress, between the two leaflets—has drawn
increasing interest for its impact on membrane proper-
ties and potential biological implications [7–10]. Differ-
ential stress has, among other things, been proposed as a
mechanism by which curvature torques originating from
lipid shape preference can be cancelled out, resulting in
a flat membrane [7]. While it has been proposed that
frequently flip-flopping species like cholesterol would act
to nullify any such differential stress [11], it was recently
shown that this need not be the case; instead, choles-
terol may well create differential stress due to preferen-
tial lipid interactions [8]. Thus, the combined influence
of many distinct membrane asymmetries determines im-
portant properties of the bilayer, such as its equilibrium
shape, its cholesterol distribution, and its elastic moduli.
In this work we will investigate some peculiar aspects of
the simulation of such asymmetric systems.
A standard technique for in silico investigations of lipid
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bilayers is Molecular Dynamics (MD) simulations. In or-
der to simulate quasi-infinite continuous membrane sys-
tems, a common choice of boundary conditions (BC) is
that of fully periodic boundary conditions (PBC). This
choice inadvertently comes with the side effect of enforced
membrane flatness; the boundary conditions essentially
pin the bilayer into a planar configuration regardless of
its preferred curvature state. There are numerous reasons
this could be undesirable, for instance if one is interested
in curvature induction and/or sensing by proteins inter-
acting with membranes in their elastic ground state. An
alternative choice for periodically connecting a bilayer are
so-called P21 boundary conditions [12]. These have re-
cently been shown to offer some distinct advantages when
dealing with asymmetric bilayers [13], but unfortunately
they are not readily available in most MD simulation
packages.
With this in mind, we propose an alternative set of sim-

ulation conditions under which the membrane is allowed
to relax its mean curvature. In order to achieve this, we
break the periodicity of the membrane along one of the
lateral dimensions, resulting in a semi-infinite membrane
strip with free edges running parallel to the remaining
direction of periodicity. Ordinarily, such open edges on a
lipid bilayer would result in highly accelerated lipid flip-
flop, yielding an on-average symmetric membrane with
zero curvature preference. To circumvent this situation
and maintain any conceivably imposed membrane asym-
metry, we introduce nano-scale “sticky tapes” which ad-
here to the membrane open edges and prevent flip-flop
over the edge defect.
The precise physical nature of the adhesive patches

is not of particular importance, as their purpose is to
facilitate novel simulation conditions, not to serve as a
template for an experimentally realizable molecular sys-
tem. In this work, we illustrate the design principles in
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the ultra coarse-grained (CG) Cooke lipid model, but the
idea is readily transferable to other, more finely-resolved
models.
Before we discuss details of this new method, let us

first set the stage and revisit in Sec. IA some basic elas-
ticity background for asymmetric membranes, and also
explain in Sec. I B why periodicity is such a constraining
condition.

A. Bilayer Elasticity

To lowest order, lipid membrane curvature elasticity is
well-modeled by the Helfrich energy functional [14],

EH =

∫
S

dA

{
1

2
κ(K −K0)

2 + κ̄KG

}
. (1)

In this expression, the integral is taken over a 2-
dimensional surface S representing the membrane shape.
The constants κ and κ̄ are the bending modulus and
Gaussian curvature modulus, which respectively quantify
the energetic penalty for inducing local curvature K and
Gaussian curvature KG. The constant K0 is the spon-
taneous curvature the membrane would prefer to have,
and it is only non-zero in cases of broken up-down sym-
metry. In this work we will be concerned with situations
in which neither membrane topology nor the geodesic
curvature of any open boundary is changing, and as such
we can disregard the second term by invoking the Gauss-
Bonnet theorem [15]. If a finite patch of membrane is
stretched or compressed such that its area A differs from
its rest area A0, a Hookean contribution is added to the
free energy,

EA =
1

2
KA

(A−A0)
2

A0
, (2)

in which KA is the area or stretching modulus.
The sum EH +EA can describe the elastic free energy

of a lipid bilayer membrane, or each constituent mono-
layer of the bilayer [16]. The second approach allows one
to quantify the moduli of each monolayer individually
(indicated by a subscript ‘m’, e.g. ‘κm’), which will for
instance depend upon the lipid species present in each
layer. The composite bilayer energy is then the sum of
the individual monolayer terms, neglecting contributions
due to inter-leaflet coupling. In all that follows, we arbi-
trarily label one of the monolayers as the “upper” leaflet,
and indicate its relevant quantities with a subscript ‘+’,
and similarly use a subscript ‘−’ for quantities pertaining
to the “lower” leaflet. Quantities with no subscript refer
to the composite bilayer as a whole, or its midsurface, as
appropriate.
It must be noted that our expression for the free en-

ergy implicitly assumes that there is no curvature-area
cross-coupling term proportional to (K −K0) · (A−A0),
which should reasonably appear in a second-order ex-
pansion of the free energy in terms of K and A. The

z+

z−

dA

dA+

FIG. 1. Illustration of lipid bilayer geometry. The reference
surface for each leaflet (dashed curves) is displaced away from
the bilayer midsurface (solid curve) along its normal by dis-
tance z±.

vanishing of this term implies that we take the neutral
surface of each monolayer as our reference surface de-
scribing its geometry, as by definition this is the surface
at which bending and stretching contribute to the free
energy independently [17]. The locations of these refer-
ence surfaces will be assumed to be a constant distance
z± away from the bilayer midplane (see Fig. 1). At times
where it is necessary to distinguish the neutral surface
from other possible reference surfaces, we will denote it
by zn.
As has been shown previously [7, 10], the total bilayer

elastic energy per unit area resulting from this descrip-
tion can be expressed in a succinct form in which both
contributions to the energy resemble the Helfrich bending
term,

etot =
1

2
κ(K −K0b)

2 +
1

2
κnl(K̄ −K0s)

2 , (3)

plus terms of higher order in K. Here κ is the bilayer
bending modulus κ++κ−, and κnl is a non-local “bending
modulus” arising through stretching and compression of
the leaflet areas, and is given by κnl = z2+KA++z2−KA−.

K̄ is the average of the midsurface curvature over the
whole membrane area. For surfaces of constant mean
curvature, which will be our primary interest in this work,
this distinction can be discarded. The quantities K0b

and K0s define the optimal curvatures which minimize
the parts of the free energy arising due to bending and
stretching, respectively. They can be shown to be [7, 18]

K0b =
κ+K0+ − κ−K0−

κ+ + κ−
(4)

and

K0s =
A0+ −A0−

z+A0− + z−A0+
. (5)

In the above equations K0± and A0± are the monolayer
spontaneous curvatures and rest areas, respectively. It
then follows that a general asymmetric membrane’s equi-
librium curvature preference can be found by minimizing
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Eqn. (3),

∂etot
∂K

∣∣∣
K=K⋆

0

= 0 =⇒ K⋆
0 =

κK0b + κnlK0s

κ+ κnl
. (6)

This expression makes clear that the preferred bilayer
curvature arises as a balance between the curvatures
which optimize the two contributions to the free energy,
weighted by their respective moduli.

B. Clamping by Periodic Boundary Conditions

The equilibrium curvature K⋆
0 just derived assumes

that the bilayer is able to relax its curvature and area.
If one simulates an asymmetric lipid membrane (differ-
ing lipids in both species and number in each leaflet)
using the typical MD simulation setup of fully periodic
BC, however, the membrane will almost invariably re-
main flat [19, 20]. This is despite the fact that there will
in general be a sizeable differential stress present in the
system under such conditions, even when the membrane
is allowed to relax its area under conditions of zero net
tension [7, 8]. One might expect, intuitively, that the
bilayer would tend to relieve the relative area strain by
bending, similar to the way in which a bi-metallic strip
bends upon heating. This is not the case due to the re-
straining influence of the PBC.
At a hand-waving level, this can be understood rather

straightforwardly: any bending the membrane would un-
dergo to relieve area strain differences between the two
leaflets has to be un-done somewhere else in the simula-
tion box in order for the membrane to remain continu-
ous across PBC. We can formalize this idea by directly
calculating the area difference between the two mono-
layers’ reference surfaces. Consider a square membrane
patch prepared in a flat configuration under PBC with
side lengths L.
Since the reference surfaces are parallel-displaced away

from the bilayer midsurface, their area elements dA± can
be related to the midsurface element dA via the parallel
surface relation dA± = dA(1 ± z±K + z2±KG) [15], as
illustrated in Fig. 1. We thus find

∆A =

∫
S

(dA+ − dA−) = (z+ + z−)

∫
S

K dA , (7)

where we have again used the Gauss-Bonnet theorem to
discard the integral of KG. Let us now consider mem-
branes that can be parametrized in Monge gauge, mean-
ing, by a height function h(x, y) defined on (x, y) ∈
[0, L]2. If the membrane is nearly flat, gradients are
small, |∇h| ≪ 1, and in this limit area element and cur-
vature simplify to dA ≈ dx dy and K ≈ ∇2h. In this
case it immediately follows that∫

S

K dA ≈
∫

[0,L]2

∇2hdx dy =

∮
∂[0,L]2

∇h · ℓ̂ ds PBC
= 0 . (8)

FIG. 2. Renderings of sticky tape patches implemented in
the Cooke model showing how they adhere to the membrane
edges. (a) Sticky side of the adhesive, color-coded according
to which lipid tails it attracts: purple for upper leaflet lipids,
orange for lower. (b) Repulsive side of the adhesive. (c) A
slice through a snapshot of an asymmetric Cooke membrane
simulation with edges stabilized by sticky tapes. The mem-
brane is periodic into the page. Lipid head groups in blue,
lipid tails in yellow/green. The solid curve approximates the
bilayer midplane, with the dotted lines illustrating monolayer
reference surfaces.

At the second equality we use the divergence theorem
to transform the integral over the base plane into an in-
tegral along the square boundary with outward-pointing
normal ℓ̂. Under PBC, opposite sides of the simulation
cell contribute equally (same shape) but with an opposite

sign (direction of ℓ̂ flips), such that the entire expression
integrates to zero. We thus see why membranes subject
to PBC tend not to relax differential area strain between
leaflets by bending into the third dimension: doing so
would not actually relax anything, but rather introduce
curvature strain energy with no compensatory benefit.
As such, membranes simulated subject to PBC even-
tually resort to alternative mechanisms to relieve (suf-
ficiently large) differential stress, such as ejecting lipids
from the compressed leaflet in the form of micellar buds,
as seen in recent coarse-grained simulations [20].

II. METHODS

We seek a protocol to simulate asymmetric lipid mem-
branes such that the membrane is able to relax both
its area and curvature simultaneously. As we have just
elaborated, this is not possible for membranes subject to
PBC in all directions. If one simply cuts the membrane
along one of the lateral directions to break the periodic-
ity, yielding a membrane strip of finite width and infinite
(periodic) length in one direction, then the desired relax-
ation can occur. However, this solution is ultimately self-
defeating, as membrane edges constitute defects along
which lipid flip-flop is strongly accelerated [21]. Such a
membrane would rapidly equilibrate lipid chemical po-
tentials between the two leaflets, yielding a symmetric
membrane with K⋆

0 = 0. But there is a very easy fix to
this problem: tape up the edge.
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A. Sticky Tape

To rescue this free-curvature protocol, we introduce a
new element to the simulation setup: adhesive “sticky
tape” which adheres to the membrane edges and blocks
lipid flip-flop. Fig. 2 shows the basic design implemented
alongside our CG lipid model (described further below).
The idea is straightforward, and we will describe it here in
general terms applicable to MD lipid models of essentially
any resolution. Implementation details that are specific
to our CG lipid model are discussed in the SI.
The sticky tapes have a height roughly equal to the

hydrophobic thickness of the membrane, as they are de-
signed to adhere to the lipid tails. Only one side of each
tape structure is “sticky” (that is, has an attractive inter-
action with the lipid tails), because we do not wish lipids
to “flow around” the tape. Due to some idiosyncrasy of
our CG model, the sticky side is subdivided into two re-
gions corresponding to the upper and lower leaflets: the
upper half only interacts favorably with lipids which have
been designated as belonging to the top leaflet, and sim-
ilarly the lower half only adheres to lower-leaflet lipids
(for more on this, see the discussion of our model be-
low). We do not believe this to be an essential feature
of our method, though, especially not when replicated in
an atomistic simulation.
The reverse side of the sticky tapes interact with other

simulation particles through purely repulsive potentials,
as this prevents the tape from being engulfed by the
membrane. The tapes have length approximately equal
to the length of the simulation box in the (now single)
direction of membrane periodicity in order to completely
cover the membrane open edges. The tapes should have a
fairly high rigidity, such that the membrane edge remains
straight and parallel to the direction of periodicity. One
could even design the tape structures to be self-connected
along the periodic direction, and additionally under ten-
sion in order to maintain their straight geometry, but we
do not take this approach here.

B. CG Lipid Model

To evaluate the sticky tape protocol we employ MD
simulations of the CG Cooke lipid model [19, 22, 23].
This model belongs to the class of very highly coarse-
grained representations (just a few beads per lipid),
which typically come with an artificially high flip-flop
rate that impedes maintaining compositional or stress
asymmetry. We therefore employ its recently devel-
oped “flip-fixed” variant that circumvents this limitation.
What follows here is a very brief summary; for a detailed
description see Ref. [19].
The flip-fixed Cooke lipid model is an implicit-solvent

model which represents individual generic lipids as four
CG beads in a row. One bead represents the head group
(blue in Fig. 3), with the other three defining the tail
region (yellow in Fig. 3). As there is no water in this

α

a b c

FIG. 3. Cartoon of the tapered Cooke model lipids indicat-
ing the approximate taper angle: (a) α = 0, (b) α > 0,
(c) α < 0. Observe that positive values of α correspond to
lipids for which the head is larger than the tails, rendering
the monolayer curvature more positive.

model, the fluid phase is stabilized via a cohesive attrac-
tion between the lipid tails. Head beads interact with
other beads through purely repulsive potentials. In the
flip-fixed version of this model, lipids are additionally
labelled according to the leaflet in which they are ini-
tially placed in order to penalize flip-flop, which is accom-
plished by disabling the attractive interaction between
the two middle beads of lipid tails belonging to opposite
leaflets. Observe that this leaflet-designation does not
require lipids to be chemically distinct. Furthermore, we
can exploit the existence of this label in the construction
of the sticky tape: by having the adhesive side facing
the upper leaflet only be adhesive to upper-leaflet lipids
and vice versa. More finely resolved models with intrin-
sically low flip-flop rates would not need to resort to such
a leaflet-labeling trick, and so we would not have to make
it part of the sticky tape construction either.

To illustrate the workings of our sticky tape setup with
some nontrivial leaflet-based elastic asymmetry, we ad-
ditionally introduce in this work a tapering angle α that
determines the overall lipid shape, generating a set of
lipids with differing intrinsic curvature preference (see
Fig. 3). Changing the shape of the lipids alters more
than just spontaneous curvature, and as such each lipid
shape employed in this work (each corresponding to a
particular value of α) was run through a series of bench-
marks to determine relevant elastic parameters. These
include area per lipid aℓ, monolayer bending modulus
κm, and monolayer stretching modulus KAm. The values
of these parameters, as well as the procedures by which
they were measured in simulation, are provided in the SI.
In order to ensure that all membranes remained in the
fluid phase throughout our simulations, we simulated at
a slightly higher temperature than originally proposed in
[19], as noted below.
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C. MD Simulations

To validate our design principles, we carried out sev-
eral simulation series in which the number and types of
lipids in either leaflet are changed. This collection of sim-
ulations consists of three sequences, each comprising five
simulations in which the lipid type remains fixed in both
leaflets but their number is changed.
In the first sequence, both leaflets contain identical

lipids with taper angle α = 0 (the “default” Cooke
lipids). The initial simulation is fully symmetric, with
512 lipids in each leaflet (1024 in total). In each subse-
quent simulation, the number of lipids in the + leaflet
(N+) is increased by ∼ 2% of the initial 512 (rounded
to the nearest whole lipid), while the number in the −
leaflet (N−) is decreased by the same amount. This
setup demonstrates the development of curvature pref-
erence purely due to leaflet area imbalance between the
two leaflets. The second simulation sequence consists of
bilayers in which the + leaflet contains negatively tapered
Cooke lipids (α = −1◦) whilst the − leaflet is populated
with positively tapered lipids (α = 0.5◦). Each subse-
quent simulation is modified in the same manner as the
first series; N+ is incremented and N− is decremented
equally. The third sequence in this set has α+ = 0 and
α− = −1.5◦. Unlike the previous two sequences, here we
decrease N+ while increasing N−, though the magnitude
of the change is the same as in the previous cases. This
collection of simulations serves to verify that the sticky
tapes are able to maintain stable asymmetric membranes
with open edges across a variety of curvatures and states
of differential stress.
Going beyond simply testing whether the new protocol

functions on a basic level, we carried out a second collec-
tion of simulations inspired by a simplifying special case
of Eqn. (6). If the + and− leaflets contain identical lipids
(as in the case of the first simulation sequence described
above), then K0b = 0 and K0s = ∆A0/[zn(A0+ + A0−)].
Eqn. (6) then takes the form (see SI)

K⋆
0 =

znKA

κ+ z2nKA
δn , (9)

where we have introduced the number asymmetry param-
eter δn = (N+−N−)/(N++N−) which measures the bi-
layer’s fractional deviation away from number-symmetry.
The moduli KA and κ are measurable in simulation

through a variety of protocols, K⋆
0 can be determined

from the resulting geometry by fitting the projected tail-
bead positions to a circular segment, and δn is user-
controlled. Thus, the only unknown in Eqn. (9) is
zn, the distance from the bilayer midplane to the neu-
tral surface of each monolayer. If we run a sequence
of simulations containing only one lipid type, over a
range of number asymmetries δn and for taper angles
α ∈ {−2◦,−1.5◦, . . . , 0.5◦}, we can then determine the
neutral surface position zn and find how it depends on
lipid shape.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Bulk Asymmetry δnb [%]

0.02

0.01

0.00

0.01

0.02

0.03

0.04

M
id

p
la

n
e

C
u
rv

a
tu

re
 K

0
 [σ

−
1
] α+ = 0◦, α− = 0◦

α+ = − 1.0◦, α− = 0.5◦

α+ = 0◦, α− = − 1.5◦

FIG. 4. Equilibrium membrane curvature K⋆
0 as a function of

asymmetry δn within the bulk membrane region. Measure-
ments of the average curvature K were taken at the bilayer
midsurface during the equilibrium portion of each simulation.
The standard error of the mean is smaller than the plotted
points in all cases. Dashed lines are linear fits to the simula-
tion data. × symbols indicate state points at which the upper
and lower monolayer rest areas are equal. ⋆ symbols indicate
state points which yield on-average flat bilayers.

All simulations presented in this work were carried out
using version 4.1 of the ESPResSo MD package [24].
All sticky tape simulations as elaborated in this sec-
tion were run under constant NV T conditions using a
Langevin thermostat with kBT = 1.5 ε and friction con-
stant Γ = 1 τ−1. The simulation cell dimensions were
set to (Lx, Ly, Lz) = (60σ, 16σ, 60σ) and the integra-
tion time step was set to δt = 5 · 10−3τ . The membrane
is initially placed in a flat configuration with its nor-
mal vector along the ẑ direction, spanning from x = 0 to
x = 39σ, and continuous in the periodic y-direction. The
sticky tape structures were then placed on each mem-
brane edge, with the “inward-facing” layers of adhesive
CG beads placed at x = −1σ and x = 40σ. Fig. 2c
shows a snapshot from the equilibrium portion of one
of these simulations, viewed looking in the +ŷ direction.
Each system was run for a total of 3 · 105τ . Analyses
were carried out on the latter 2 · 105τ of each simulation,
discarding the initial equilibration period.

III. RESULTS

A. Fully Asymmetric Sequence

We found the sticky tape protocol to successfully main-
tain membrane asymmetry and differential stress in open-
edge membranes for all cases simulated. The membrane
in each simulation is able to dynamically adjust both its
area and curvature subject to free boundary conditions,
allowing the elastic free energy to assume its minimum
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(although still subject to periodicity in one direction).
Fig. 4 shows the resulting average bilayer curvature K⋆

0 ,
measured at the midsurface, as a function of lipid number
asymmetry for each simulation in our three series. No-
tably, the variation of curvature is found to be linear in δn
over the entire range of asymmetries investigated, even
nearing critical asymmetry values beyond which sponta-
neous breakdown of bilayer asymmetry is expected in our
CG model [19]. This is true both in the case of lipidomic
symmetry (blue circles in Fig. 4) as well as lipidomic
asymmetry (orange triangles, green diamonds).
Some particular features of interest are highlighted in

Fig. 4 by the × and ⋆ symbols. A common choice for
the construction of asymmetric membranes in MD simu-
lations subject to PBC is to assemble the two monolayers
such that the individual monolayer rest areas are equal
[25–27]. One way to determine a δn value that ostensi-
bly achieves this goal is to run symmetric bilayer simu-
lations of the two respective individual leaflet types (or
even compositions); this is sometimes called the “area
per lipid (APL) protocol”. For our three simulation se-
quences the δn values resulting from such an approach
are indicated in Fig. 4 by the × symbol. Notice that for
the compositionally asymmetric systems (green and or-
ange data), this results in membranes with sizable non-
zero curvature. This means that such membranes sim-
ulated in flat configurations subject to PBC would be
elastically strained, resulting in a (perhaps unexpected)
residual differential stress [7]. If one prefers to simulate
bilayers which voluntarily assume an on-average flat con-
formation, then the state points indicated by ⋆ symbols
in Fig. 4 give the corresponding δn values to use to set
up such a simulation.

B. Number Asymmetry Only Sequence

As explained in Sec. II, our second sequence of sim-
ulations comprises 6 sets of 5 simulations, each being
analogous to the blue data in Fig. 4, but for Cooke lipids
of varying taper angle α. For each set of fixed α simula-
tions, fitting to the slope of K⋆

0 (δn) as given by Eqn. (9)
yields an inferred value for the neutral surface location
zn for the given lipid type. The resulting zn(α) values
are plotted in Fig. 5 as purple triangles. We find that
as the lipid taper angle α is increased, zn also increases
monotonically. That is, monolayers composed of lipids
with more positive intrinsic curvature preference tend to
have their neutral surfaces located farther away from the
bilayer midplane.

IV. DISCUSSION

A. Finite Size Effects

Ideally, the only role of the sticky tape is to adhere to
the membrane edges and prevent lipid flip-flop. However,
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z h
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p≈ 0.34

p≈ 0.65

p≈ 0.82

p≈ 0.80 2 1 0

0.0

0.1

0.2

∆
z n

 [σ
]

zn from K0 (δn)

zn from λ(z)
zp

FIG. 5. Comparison of results for the location of the neu-
tral surface and pivotal surface as a fraction of the monolayer
thickness (determined by the mean position of the lipid head
bead). Dark blue triangles are from the sticky tape curva-
ture measurements, red points are from the lateral stretching
modulus profile (described in more detail in the SI), and the
green crosses are measurements of the pivotal plane based on
the method of Ref. [28]. Error bars represent the error of
the mean. The listed p-values are the probability of a zn dif-
ference ∆zn between the two methods at least as big as the
observed one occurring by chance, under the null hypothesis
of an identical underlying distribution. Inset: ∆zn as a func-
tion of taper angle; the blue dashed line shows the best fit to
a constant systematic offset.

FIG. 6. Area per lipid aℓ(s) (top) and hexatic order parameter
|ψ6| (bottom) as a function of distance s from the membrane
arc midpoint (purple curves). The thickness of the curves
corresponds to the error of the mean. The horizontal black
line in each plot is the mean value determined from a flat PBC
simulation. The vertical dashed line gives the approximate
cutoff between the bulk and edge regions, showing that (in
our setup) the influence of the sticky tape reaches about 5σ
into the bulk.
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the introduction of an attractive surface at the membrane
edge somewhat predictably leads to changes in membrane
properties near the edge which decay away as one travels
inward from the edge toward the bulk membrane phase.
In order to quantify the range of influence of sticky tape
boundary effects, we can examine the local area per lipid,
aℓ, and the hexatic order parameter |ψ6| as a function of
distance from the central axis of the membrane. These
are shown in Fig. 6, calculated from a sticky-taped sim-
ulation of a symmetric standard Cooke lipid membrane
system (blue point in Fig. 4). This allows us to make di-
rect comparison with the values for these quantities ob-
tained from standard PBC simulations at zero tension,
also shown in Fig. 6. A more detailed comparison of
full |ψ6| order parameter distributions from both sticky-
taped and PBC simulations is presented in the SI.

In the center of the membrane, there is excellent agree-
ment between the order parameters in the two systems.
As one gets closer to the membrane edge, and therefore
the sticky tape, membrane order increases, and area per
lipid correspondingly decreases. The approximate cutoff
between the bulk and edge phases is shown by the dotted
line in the figure. All analyses pertaining to membrane
properties, such as curvature and neutral surface, are
performed using only information from the unperturbed
bulk. As the number of lipids in the bulk portion of
each monolayer is determined by the equilibration of lipid
chemical potentials between the bulk and edge phases,
the observed number asymmetry of the bulk phase can
slightly differ from δn, the globally imposed asymme-
try. We refer to this bulk asymmetry as δnb, and it is
this asymmetry which is plotted on the horizontal axis of
Fig. 4.

Relatedly, our sticky-taped membranes are somewhat
reminiscent of scaffolded lipid nanodiscs [29], with the
distinguishing feature of our protocol being the existence
of a single direction of infinite periodicity, contrasted with
nanodiscs’ inherent finiteness. The fact that our sticky-
taped membranes’ bulk properties are roughly in line
with their untaped counterparts may then be somewhat
surprising, given that nanodiscs often have bulk proper-
ties which differ from their native counterparts [30, 31].
This could be entirely geometric, though: the open edges
of our sticky-taped membranes are on-average straight
lines parallel to the direction of membrane periodicity.
There is then no surface Laplace pressure arising due
to the line tension γ of a curved boundary, ΣL = γ/R.
The sticky tape geometry also allows the bilayer to freely
adjust its area without bending or bulging due to con-
finement by the scaffold. Moreover, since the edges are
straight, they have no geodesic curvature, no matter how
much the membrane deforms in order to relax a bending
torque. This ensures that no Gaussian curvature con-
tribution enters via the edge—something we could not
guarantee for the circular edge of a nanodisc. Inter-
estingly, recent simulations of lipid bicelle systems [32],
which are in may ways similar to lipid nanodiscs, do not
seem to exhibit such noticeable deviations in bulk prop-
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FIG. 7. Trans-monolayer stretching modulus profile λ(z) for a
Cooke lipid monolayer with α = 0.5◦, calculated as described
by Campelo et al. [17] (see also the SI). Shading represents
the error of the mean. The red vertical line gives the neutral
surface location zn as determined by Eqn. (11).

erties, though this could be due to particular simulation
details which we revisit later.

B. Neutral Surface

In Fig. 5 we present the result of our neutral surface
measurements based on Eqn. (9). The natural question
to ask is how these results compare to other methods for
determining the location of the monolayer neutral surface
in simulation. Campelo et al. [17] present a method for
determining zn from Molecular Dynamics simulations by
measuring the trans-monolayer stretching modulus pro-
file λ(z). It quantifies the change of the monolayer lateral
stress profile σ(z) with area strain, and is defined as

λ(z) ≡ A
∂σ(z)

∂A
. (10)

This function can be approximated by calculating σ(z)
for several small, flat, PBC simulations at a series of
increasing area strains (as explained in SI). Fig. 7 shows
λ(z) found for a single-component Cooke lipid membrane
with α = −0.5◦.
The curvature-area cross-coupling modulus turns out

to be given by the first moment of λ(z) with respect to
the reference surface height z0 [17]. By definition, this
modulus vanishes for a reference surface at zn, implying

zn =

∫ h

0
zλ(z) dz∫ h

0
λ(z) dz

. (11)

Here z is measured from the bilayer midplane and the
integral upper bound h is the total height of the mono-
layer, which in practice can be taken arbitrarily large
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since λ(z) → 0 rapidly once outside the membrane (see
again Fig. 7).
The results of this calculation for our Cooke lipid sys-

tems are also shown in Fig. 5 (red points). By eye, our
new method for determining zn seems to be in fairly good
agreement with the λ(z) profile method. Indeed, for each
individual pair of measurements we can calculate a two-
tailed p-value under the assumption of Gaussian errors
(reported in Fig. 5), which would suggest compatibility
of the two methods. However, taken together, we see
that all of the zn values calculated via λ(z) are less than
those calculated from our analysis of K⋆

0 (δn), which we
would only expect to occur ∼ 3% of the time by chance.
The inset of Fig. 5 plots the differences ∆zn between
the two methods of calculation for each lipid type, along
with a fit to a constant offset (blue dashed line), found
to be 0.08 ± 0.04σ, which is about 2% of a lipid height,
and two standard deviations away from zero. While very
close, there does appear to be a small systematic differ-
ence between the two methods.
The method we have presented here does not require

calculation of multiple lateral stress profiles and their
connection to the overall moduli. However, it does
require running multiple sticky tape simulations from
which the mean curvature is measured. Regardless of
which method is more efficient, it is reassuring to see
that a measurement which relies on direct observation of
the large-scale geometric response of the membrane is in
good agreement with micro-elastic considerations.
It is informative to compare our result for the neutral

surface location zn with the location of another common
monolayer reference surface, the pivotal plane, zp. The
defining property of this surface is that it is the loca-
tion of zero area strain upon pure membrane bending.
We measured zp for all of the lipid shapes employed in
this work using the method presented by Wang and De-
serno [28], which relies on counting the lipid imbalance
between the two leaflets of a curved membrane buckle.
The results of this analysis are presented alongside the
neutral surface results in Fig. 5. The measured values for
zp and zn are indistinguishable within error—a slightly
surprising result, given that there is no reason to expect
these two locations to coincide. Indeed, the values of κm
and K0m are generally dependent upon the choice of ref-
erence surface. This might reflect the inherent simplicity
of our highly coarse-grained lipid model, as these two sur-
faces are generally not found to coincide experimentally
[33–36].

C. Asymmetric Initial Conditions

As alluded to in Sec. III A, there have been several
protocols presented in the literature for how to assemble
and carry out MD simulations of general asymmetric lipid
membranes. These range from simply matching the total
rest areas of the lipids on each side (as previously men-
tioned) [25–27], to positing that the two leaflets should

be simultaneously tensionless [37], to much more sophisti-
cated schemes involving equilibrating chemical potentials
of specific lipids between the two monolayers through the
use of nontrivial boundary conditions [13]. Going beyond
infinite periodic protocols, the previously mentioned bi-
celle setup of Pöhnl et al. [32] has similar aims to our
sticky tape method. Their protocol is to simulate spe-
cially restrained lipid bicelles, which are essentially nan-
odiscs whose edges are stabilized by detergent molecules
or short-tailed lipid species [38]. For properly tuned mix-
tures, the high-curvature-preferring short-chained species
localize at the disc rim, with the bilayer-forming lipids
creating the core domain. Such systems have previously
been re-created in simulation in order to, e.g., investigate
peptide-induced membrane curvature [39]. The setup of
Pöhnl et al. [32] includes artificial restraining potentials
that maintain selectively chosen lipids either within or
outside a given cylindrical region to maintain separation
between the bulk and rim phases. Interestingly, unlike
other lipid disc protocols, their simulations do not ex-
hibit noticeable deviations in lipid density, suggesting a
beneficial influence of the external rim potential. While
successful, it remains somewhat unclear how the mem-
brane is affected by the fixed restraining potentials, which
should in principle suppress membrane bending beyond
certain thresholds. The presence of a curved interface at
the membrane edge also raises concerns about the influ-
ence of the often-neglected boundary term in the Helfrich
energy (say, a κ̄-contribution via the Gauss-Bonnet theo-
rem, coming from the boundary’s geodesic curvature), as
well as some form of radial compression via the Young-
Laplace pressure, as discussed above.

All these protocols strive to realize certain “elastic en-
sembles” in which a particular set of extensive (like area)
or intensive (like stress) thermodynamic variables are set.
What we do not know, of course, is what the right en-
semble would be in the first place. It may well depend on
the situation whether a bilayer with vanishing differential
stress is physically relevant, a bilayer with vanishing cur-
vature torque, or yet some other condition. Ideally, one
would know this from experiment, but this can be tricky,
for instance because currently no method exists to mea-
sure the differential stress. One might have to indirectly
infer the most appropriate ensemble, or simply make an
executive decision in this matter. At any rate, in the
present paper we take no view on the “correct” bound-
ary condition and merely wish to provide tools that help
to enact or identify certain choices, which the user needs
to justify by independent means.

Our sticky tape protocol allows for membranes to as-
sume their preferred mean curvature conformation while
simultaneously relaxing overall bilayer area. If one
prefers to simulate a flat system subject to full PBC,
the sticky tape method is still potentially useful because
it allows one to determine the composition and number
asymmetry that renders the membrane voluntarily flat
(as shown in Fig. 4). This can then be transferred to
a fully periodic box for production simulation. Observe
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that such systems are generally under differential stress,
but its origin is physically clear: we chose an ensemble
in which the equilibrium shape is flat and hence satis-
fies the different mechanical equilibrium condition of zero
torque—unlike setups such as the APL protocol that in-
troduce hidden differential stress via the forced “unbend-
ing” of a curvature-preferring non-torque-free bilayer by
the PBC.
We also wish to point out that the freely varying curva-

ture conditions of sticky tape simulations are more than
just a useful trick for finding a flat state. The sticky
tape protocol also opens the possibility of simulating
membrane-interacting proteins without the constraints
imposed by full PBC. Such simulations could for instance
provide novel insight into curvature sensing and/or in-
duction.

V. CONCLUSION

We have presented the novel “sticky tape” protocol
for the simulation of asymmetric lipid membranes un-
der simultaneous free-area and free-curvature conditions.
Its stability and robustness have been demonstrated in
the context of the ultra coarse-grained Cooke model,
in which we find that asymmetric membranes main-
tain their asymmetry and relax to their preferred areas
and curvatures, even when subject to sizable differen-
tial stress. We have also shown how the newly unlocked
simulation ensemble can shed light on an essential elastic
parameter of a lipid monolayer: the location of its neutral
surface. So far, the method has only been implemented
in the context of the Cooke lipid force-field. The design
principles of the sticky tape protocol are, however, not
specific to coarse-grained models, and can be generalized

to higher resolution systems.
While the portions of the membrane closest to the

edges exhibit deviations from native behavior, the prop-
erties of the bulk phase are unperturbed by the presence
of the sticky tapes. It should also be emphasized that in
this initial exploration, we made no effort to systemat-
ically tune the adhesive interaction potentials in a way
that could minimize these edge deviations. As the struc-
ture of fluids are strongly influenced by the repulsive part
of the pair potential [40], softening the core part of the
sticky tape-lipid attraction, or a weakening of the adhe-
sion strength (depth of the potential), could potentially
lessen the finite-size effects seen here.

SUPPLEMENTARY MATERIAL

A supplementary PDF file is provided which gives: a
detailed description of the tapered Cooke lipid model; de-
tails of the implementation of the sticky tapes with this
model; the derivation of Eqn. (9); details of the computa-
tion of lateral stretching modulus profiles; Plots of Cooke
lipid hexatic order parameter distributions. An addi-
tional archive supp code.zip is provided with Python
scripts for running sticky tape membrane simulations us-
ing the ESPResSo MD package.
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