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ABSTRACT A widely conserved property of many biological lipid bilayers is their asymmetry. In addition to having distinct
compositions on its two sides, a membrane can also exhibit different tensions in its two leaflets, a state known as differential stress.
Here we examine how this stress can influence the phase behavior of the constituent lipid monolayers of a single-component
membrane. For temperatures sufficiently close to, but still above, the main transition, molecular dynamics simulations show the
emergence of finite gel domains within the compressed leaflet. We describe the thermodynamics of this phenomenon by adding
two empirical single-leaflet free energies for the fluid-gel transition, each evaluated at its respective asymmetry-dependent lipid
density. Finite size effects arising in simulation are included in the theory through a geometry-dependent interfacial term. Our
model reproduces the phase coexistence observed in simulation. It could therefore be used to connect the “hidden variable" of
differential stress to experimentally observable properties of the main phase transition. These ideas could be generalized to any
first order bilayer phase transition in the presence of asymmetry, including liquid-ordered/liquid-disordered phase separation.

SIGNIFICANCE Despite the ubiquity of asymmetric membranes, they have not been studied nearly to the same extent
as their symmetric analogs. This was largely due to the difficulty of preparing asymmetric model membranes, a challenge
only recently overcome. An important but still poorly understood feature is the stress state in asymmetric membranes,
which couples to numerous properties. It was recently shown to give rise to a stiffening transition beyond sufficiently high
asymmetry due to the emergence of gel domains in the compressed leaflet. In this work we introduce a theoretical model
for this transition, which provides a way to infer the stress state of a membrane through observation of phase coexistence,
and has general implications for phase behavior in asymmetric systems.

INTRODUCTION
Lipid bilayer asymmetry is a widely conserved biomembrane
property across nearly all of Eukarya (1–4). As an example,
it is well known that the composition of the plasma mem-
brane of nucleated cells is asymmetric with respect to the
exoplasmic and cytosolic leaflets (3). Such membrane states
are not in thermodynamic equilibrium, but are quasi-static
states maintained out-of-equilibrium by various active and
passive biological processes (5). The existence of compo-
sition asymmetry in cellular membranes has been known
since the 1970s (6), but interest in the study of asymmetric
membranes and their role in the physical biology of cells
has grown considerably in recent years, in part due to recent
breakthroughs in experimental methods for preparing asym-
metric model membranes (7–14). These simplified systems
allow researchers to probe the fundamental consequences of
membrane asymmetry without the added complexity of the
myriad of proteins and cytoskeletal structures present in vivo.

However, composition difference is only one of the ways

in which a membrane can be asymmetric; there is also the
possibility of a difference in mechanical leaflet tension. Such
a situation can arise if the lipid density differs between the two
layers of the membrane, for instance in order to balance cur-
vature stresses resulting from mismatch of lipid spontaneous
curvatures on the two sides. Differential stress could have
important consequences for membrane-dependent processes
in the cell, but the presence of stress asymmetry is currently
something of a hidden variable, as it is very difficult to mea-
sure directly. This is not just a problem in living systems, but
a difficulty which extends to the recently unlocked playground
of asymmetric model membranes. It points to an important
insight that is missing from these asymmetric vesicle prepa-
ration protocols: a way to determine what differential stress,
if any, will be present in a newly created vesicle. Without an
understanding of the consequences of stress asymmetry and
when it can be expected in idealized membranes, there is little
hope for understanding its potential role in living cells.

It has been shown in simulation that beyond some criti-
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cal threshold asymmetry, differential stresses can lead to a
stiffening transition in compositionally symmetric bilayers
(15), wherein the bending modulus increases significantly.
More recent work has illustrated that the formation of highly
ordered domains might play a role in this transition (16). This
phenomenon could explain experimental results where asym-
metric vesicles have membrane bending rigidities significantly
larger than would be naïvely expected (17–19), since it is pos-
sible that model asymmetric membranes are inadvertently
assembled with differentially stressed leaflets. At present, this
possibility has not been experimentally investigated.

In an effort to help address this issue, and to gain a
better general understanding of the thermodynamics of dif-
ferentially stressed membranes, we develop in this work an
idealized theory of the fluid-gel transition in single-component
number-asymmetric bilayers and test it against simulations.
We accomplish this by introducing an empirical monolayer
free energy constructed from observable parameters, such as
rest area per lipid 𝑎ℓ and monolayer area compressibility mod-
ulus 𝐾𝐴,m. By combining two such free energies evaluated at
the appropriate specific area in each of the two leaflets, we
arrive at a composite free energy that can be used to numeri-
cally deduce monolayer phase coexistence diagrams. In a way,
the density difference between the leaflets “de-tunes” their
transition temperature, which due to their elastic coupling
broadens the phase transition—a very generic phenomenon
that has been previously investigated by Markin and Kozlov
using slightly different methods (20).

The important experimental signal our theory predicts
is a fluid-gel coexistence region just above the main transi-
tion temperature 𝑇gel, which indeed matches the observation
from simulation. The size of the coexistence region, and ac-
cordingly the coexistence onset temperature, increases with
increasing asymmetry. The differential stress in our system
arises through a mismatch in the number of lipids in each
individual monolayer, quantified by an asymmetry parameter

𝛿𝑛 =
𝑁+ − 𝑁−
𝑁+ + 𝑁−

, (1)

where 𝑁+ and 𝑁− are the number of lipids in the over-filled
and under-filled leaflets, respectively.

An interesting insight gleaned from our approach is that
this behavior is in no way unique to lipid bilayers; similar
coexistence phenomena should occur in any analogous asym-
metric composite system. This includes one of the earliest and
simplest thermodynamic fluid models ever studied, the van
der Waals gas. We will utilize this connection to introduce
our theoretical idea in a setting that is familiar and where the
free energy is well known, before we translate it to the bilayer
case, for which we need to make some empirical assumptions
concerning the leaflet free energy. In addition to numerical
results, approximate analytical expressions for the fluid/gel
phase coexistence are obtained from the proposed theory, the
simplest of which states that the temperature increment above
the main transition for which coexistence sets in varies linearly

with asymmetry. To lowest order, the slope of the coexistence
onset boundary is found to depend on the monolayer specific
latent heat and specific area difference of the main transition,
the fluid area compressibility modulus, and the main transition
temperature 𝑇gel.

At the small system sizes typical of molecular dynamics
(MD) simulations, finite size effects ordinarily neglected at the
level of macroscopic thermodynamics become significant. In
order to appropriately compare the results from simulation to
the theory, we introduce non-extensive geometry-dependent
free energy terms to account for the unfavorable fluid-gel
domain interface that arises in the coexistence region.

METHODS
Theory
Analogous van der Waals System
Consider a system consisting of two cylinders filled with 𝑁+
and 𝑁− ≤ 𝑁+ particles of a van der Waals gas, as illustrated
in Fig. 1a, with critical temperature 𝑇c and critical specific
volume 𝑣c. The two cylinders are capped with freely moving
pistons which are connected such that the two subsystems
are constrained to occupy identical volumes 𝑉 . The system
is exposed to constant external pressure 𝑝. We now wish
to explore what occurs in the compressed subsystem in the
vicinity of the phase transition temperature.

Let us write down the Helmholtz free energy per molecule
for one of these cylinders in units of 𝑘B𝑇c (21):

𝑓1 (𝑇 , 𝑣±) = −𝑇
[
1 + log

(𝑣± − 1
3 )𝑇

3/2

𝑐

]
− 9

8𝑣±
. (2)

In this expression 𝑇 and 𝑣± are the temperature and specific
volume in the +/− cylinder, measured in units of 𝑇c and 𝑣c,
respectively. The constant 𝑐 is irrelevant for our purposes and
for simplicity we will set it to 1. With this we can write down
the total free energy for the composite system,

𝐹 (𝑇 ,𝑉 , 𝑁+, 𝑁−) = 𝑁+ 𝑓1 (𝑇 ,
𝑉

𝑁+
) + 𝑁− 𝑓1 (𝑇 ,

𝑉

𝑁−
) . (3)

One should be careful to note that 𝑉 in this expression is the
volume of one cylinder, not the total volume of the system,
and so the work corresponding to a change d𝑉 at constant
temperature is not −𝑝d𝑉 , but −2𝑝d𝑉 , hence (𝜕𝐹/𝜕𝑉)𝑇 =

−2𝑝. If we define 𝑁0 = 1
2 (𝑁++𝑁−) and 𝛿𝑛 = (𝑁+−𝑁−)/2𝑁0,

and let 𝑣 = 𝑉/𝑁0, then the free energy per particle of the
entire system, 𝑓 (𝑇 , 𝑣) = 𝐹/2𝑁0, can be written as

𝑓 (𝑇 , 𝑣; 𝛿𝑛) = 1
2

[
(1 + 𝛿𝑛) 𝑓1

(
𝑇 ,

𝑣

1 + 𝛿𝑛

)
+(1 − 𝛿𝑛) 𝑓1

(
𝑇 ,

𝑣

1 − 𝛿𝑛

) ]
. (4)

The parameter 𝛿𝑛 determines the extent of number asymmetry;
it is the percentage difference between 𝑁± and 𝑁0. For brevity,
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Figure 1: (a) Schematic representation of the coupled van der
Waals system. (b) Plots of 𝑓 (𝑇 , 𝑣; 𝛿𝑛) + 𝑝𝑣 as a function of
𝑣 for 𝑝ext=0.22, 𝑇=0.891 for the asymmetric van der Waals
system. Each curve corresponds to one of 15 values of 𝛿𝑛
between 0 and 0.8. Red points are the global minimum of each
curve, with open black circles for local minimum. The local
maximum is indicated by a small grey point. For clarity, the
curves have been shifted downward for successive values of
𝛿𝑛. (c) Plot of minima (solid curves) and maximum (dotted)
for the free energies in part (b) as a function of asymmetry
𝛿𝑛. The bold red curve tracks the global minimum, i.e., the
equilibrium value of 𝑣, corresponding to the red points above.
(d) Helmholtz free energy per particle of a van der Waals fluid
emphasizing the non-convex “bump" region (black curve).
Double-tangent construction shown in blue.

we will often omit the explicit 𝛿𝑛 dependence when writing
𝑓 (𝑇 , 𝑣). In this formulation, we have restored the expected
relation (𝜕 𝑓 /𝜕𝑣)𝑇 = −𝑝. This variable 𝑣 as defined above
has units of specific volume, however it is important to note
that it is not the volume per particle of either compartment.
Its relation to the actual specific volumes of the subsystems,
𝑣±, is

𝑣−1 =
1
2
(𝑣−1

+ + 𝑣−1
− ) . (5)

This is the harmonic mean of the specific volumes in each
subsystem, or equivalently the specific volume corresponding
to the average density. We will simply call it the reduced
volume of the system.

In equilibrium under external pressure 𝑝, the system will
take on the volume which minimizes the Gibbs free energy,
𝑔(𝑇 , 𝑝) = min𝑣 𝑔(𝑇 , 𝑝; 𝑣) = min𝑣{ 𝑓 (𝑇 , 𝑣) + 𝑝𝑣}. Fig. 1b
shows examples of 𝑔(𝑇 , 𝑝; 𝑣) curves over a range of values
of the asymmetry parameter 𝛿𝑛 for a system at temperature
𝑇 = 0.891 and subject to external pressure 𝑝ext = 0.22. An
ordinary system (one cylinder, no asymmetry) of this gas is in

the vapor phase at this temperature and pressure, as the phase
transition temperature is𝑇lv ≈ 0.88. Examining the upper-most
curve in Fig. 1b, for which 𝛿𝑛 = 0, the large-volume minimum,
corresponding to the vapor phase, is the global minimum.
This is as expected, because when 𝛿𝑛 = 0, the composite
system is simply two identical cylinders of van der Waals gas
under identical conditions. However, at non-zero values of
𝛿𝑛, the low-volume minimum eventually becomes the global
minimum, indicating that a first-order phase transition occurs
as asymmetry is increased. At sufficiently high asymmetry,
the large-volume minimum disappears entirely.

Rather than plotting individual 𝑔(𝑇 , 𝑝; 𝑣) curves for dis-
crete values of 𝛿𝑛, we can plot only the locations of the minima
as a function of 𝛿𝑛. This is shown in Fig. 1c for the same
state point as the first plot, and clearly illustrates a transition
point, as well as the end of the metastable large-volume mini-
mum, which “annihilates” with the location of the unstable
maximum.

However, our analysis up to this point has been overly
simple, in that it neglects the Maxwell construction and its
implications for phase coexistence. The Maxwell construction
arises from the fact that the system can achieve an overall
lower free energy in the non-convex “bump" region by splitting
into two domains with specific volumes corresponding to the
end points of the double-tangent line which makes the free
energy overall convex. In this way, the true thermodynamic
free energy is the convex envelope of the curve in Fig. 1d,
shown in blue. (Note: the free energy curve in Fig. 1d is for a
lower temperature than our previous example because the free
energy curve has a more exaggerated shape, making it easier
to see the tangent line.) The double-tangent construction then
also determines what fraction 𝜙 of molecules is currently in
the liquid or vapor state in an individual sub-system through
the well-known lever rule:

𝜙vap,± =
𝑣± − 𝑣L
𝑣R − 𝑣L

and 𝜙liq,± = 1 − 𝜙vap,± , (6)

where 𝑣L and 𝑣R are the left and right end points of the
double-tangent.

Finally, by minimizing the correct total free energy con-
structed from the convex single-subsystem free energies, we
can map out the phase behavior of the compressed container
over a range of 𝑇 and 𝛿𝑛. Fig. 2 displays the fraction of liquid
in the compressed van der Waals subsystem as a function
of temperature and asymmetry. For 𝛿𝑛 > 0, upon cooling
the system, the sharp first-order vapor-liquid phase transition
is preceded by an extended region of liquid-vapor coexis-
tence in the compressed subsystem. The temperature at which
this behavior begins can be significantly larger than the ordi-
nary transition temperature 𝑇lv, and increases approximately
linearly with increasing asymmetry.

Lipid Membrane Free Energy
Our van der Waals explorations above served as a primer for
our true goal: we will now follow the same steps, but for a
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Figure 2: Condensed liquid fraction of compressed (+) van
der Waals subsystem as a function of temperature 𝑇 and
asymmetry 𝛿𝑛. Yellow corresponds to 100% vapor, dark blue
to 0% vapor (100% liquid), and color gradient to intermediate
values (liquid-vapor coexistence). The calculations were done
for 𝑝 = 0.22. White dashed curve: Sharp transition predicted
in absence of double-tangent construction.

lipid bilayer system rather than coupled containers of van der
Waals fluid. Each cylinder is replaced by a single-component
lipid monolayer of the same species. The condition of equal
volumes coupled to an external pressure is replaced by the
two monolayers being constrained to occupy the same frame
area 𝐴 under conditions of zero net bilayer tension, that is,
(𝜕𝐹/𝜕𝐴)𝑇 = Σ = Σ+ + Σ− = 0. Almost all prior arguments
and techniques carry over to the membrane case, with the
spatial dimension reduced from 3 to 2. We will additionally
need to augment the theory thus developed in order to account
for finite-size effects encountered in simulation. Before that,
one immediate complication is that the free energy for a lipid
monolayer is not as easy to write down as for a van der Waals
fluid.

Detailed investigations into the statistical mechanics of the
membrane main phase transition and lipid monolayer equation
of state have been carried out in the past; for perspectives on
this see the reviews by, e.g., Nagle (22) or Marsh (23). For
our purposes, we need not delve into these details. Instead, we
construct here a simple phenomenological free energy for a
single monolayer as a function of area. We start with the area
compressibility moduli of the fluid and gel phases, 𝐾𝐴,m,fl
and 𝐾𝐴,m,gel, which are readily measurable in both simulation
and experiment. These two constants determine the curvature
of the free energy minima corresponding to the fluid and gel
states, as the free energy can be Taylor expanded to second
order about the rest area 𝐴0 of either the fluid or gel phase in
the form

𝐹m (𝐴) =
1
2
𝐾𝐴,m

(𝐴 − 𝐴0)2

𝐴0
. (7)

This can be recast as free energy per molecule as a function
of area per lipid 𝑎 = 𝐴/𝑁 ,

𝑓m (𝑎) =
𝐹m (𝑁𝑎)
𝑁

=
1
2
𝑘𝐴,m (𝑎 − 𝑎ℓ)2 , (8)

in which 𝑎ℓ = 𝐴0/𝑁 and 𝑘𝐴,m = 𝐾𝐴,m/𝑎ℓ . Taking this
expression as the local form of the free energy in the vicinity
of each phase’s preferred area, we can construct a full free
energy by interpolating between these two with a barrier. For
the moment, let us assume that we are at the coexistence
temperature, where the two phases have the same free energy.
We then write

𝑓m (𝑎) =


1
2 𝑘𝐴,m,gel (𝑎 − 𝑎ℓ,gel)2 𝑎 ≤ 𝑎ℓ,gel

𝑏 · B(𝑎) 𝑎ℓ,gel < 𝑎 < 𝑎ℓ,fl

1
2 𝑘𝐴,m,fl (𝑎 − 𝑎ℓ,fl)2 𝑎 ≥ 𝑎ℓ,fl

, (9)

where the barrier function B(𝑎) is given by

B(𝑎) =
[
(𝑘𝐴,m,fl − 𝑘𝐴,m,gel)𝑎 − 𝑘𝐴,m,fl𝑎ℓ,gel + 𝑘𝐴,m,gel𝑎ℓ,fl

]
×

(𝑎 − 𝑎ℓ,fl)2 (𝑎 − 𝑎ℓ,gel)2

2(𝑎ℓ,fl − 𝑎ℓ,gel)3 . (10)

This function B(𝑎) is simply the unique degree 5 polynomial
such that 𝑓m (𝑎) is twice-differentiable at 𝑎ℓ,fl and 𝑎ℓ,gel, when
the parameter 𝑏 is equal to one. The precise functional form of
this barrier function far from the minima is not of immediate
practical importance for our purpose, as non-convex portions
of the free energy are replaced by the convex envelope in
the thermodynamic limit. However, in the case of systems
of finite size, which we will treat in the next section, it is
sometimes useful to allow this barrier to be adjusted. This
is the purpose of the parameter 𝑏, which simply scales the
height of the barrier, thereby also adjusting its steepness. For
the moment, it can be assumed to be 1. The function 𝑓m (𝑎) is
shown as the black curve in Fig. 3.

We can tune the free energy difference between the two
minima by adding a linear term with slope −𝜎,

𝑓m (𝑎,𝜎) = 𝑓m (𝑎) − 𝜎𝑎 . (11)

This will contribute a term −𝜎 to the monolayer tension
Σm = 𝜕 𝑓m/𝜕𝑎. However, we can also re-interpret it as a stand-
in for temperature dependence in the following way: close to
the liquid-gel phase boundary (pb), the Clausius-Clapeyron
relation (

dΣm
d𝑇

)
pb

= −Δ𝑞m
𝑇Δ𝑎

, (12)

which gives the slope of the coexistence line in the tension-
temperature plane, allows us to effectively approximate small
changes in temperature via equivalent changes in leaflet ten-
sion, given the monolayer specific latent heatΔ𝑞m and specific
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Figure 3: Schematic plot of 𝑓m (𝑎, 0) = 𝑓m (𝑎) along with finite-
size corrections from eqns. 14 and 15. The homogeneous free
energy is shown as the solid black curve, with double-tangent
in blue. Free energy contributions due to interfacial terms
Δ𝐹𝛾 shown in green. The resulting monolayer free energy
𝐹m (𝑎,𝜎, 𝑁), determined according to Eq. 16, is indicated
by the highlighted pink path in the double-tangent region.
Schematic illustrations of lipid phase coexistence geometries
are shown and labeled according to the corresponding interval
of the free energy (bottom).

area change Δ𝑎 of the fluid-gel transition. In this way, de-
spite not knowing the exact temperature dependence of the
monolayer free energy, we can construct a meaningful linear-
order approximation to the temperature dependence using the
conversion

𝜎 ≈ Δ𝑞m
𝑇gelΔ𝑎

(
𝑇 − 𝑇gel

)
. (13)

We are now prepared to construct fluid-gel phase coex-
istence diagrams for differentially stressed bilayers in the
thermodynamic limit, akin to Fig. 2. Before we can compare
our results to simulation, however, we have one more obstacle
to surmount.

Finite-Size Corrections
The double-tangent construction only truly represents the
shape of the free energy of coexistence in the thermodynamic
limit 𝑁 → ∞, where only O(𝑁) terms remain. Non-extensive
quantities, such as terms arising due to interactions at inter-
faces, become negligible in comparison to the bulk in this
limit. Taking into account finite-size effects requires including
an O(𝑁 (𝑑−1)/𝑑) free energy contribution, in our case arising
from the contact line(s) between coexisting fluid and gel
phases.

Consider a single monolayer of area 𝐴 containing 𝑁

lipids, with 𝑁gel lipids in the gel phase coexisting with 𝑁fl =

𝑁 − 𝑁gel > 𝑁gel lipids in the fluid phase. If these gel lipids

have coalesced in the form of a circular domain with line
tension 𝛾 and radius 𝑅, then the free energy contribution due
to the interface between the phases is

Δ𝐹𝛾 = 2𝜋𝑅𝛾 = 2𝛾
√︁
𝜋𝑁gel𝑎L , (14)

with 𝑁gel being determined by the lever rule as before. One
can also imagine the reverse situation, where there exists
a domain of fluid within an otherwise gel leaflet; the only
changes to the above expression are the replacement of 𝑁gel
with 𝑁fl and 𝑎L with 𝑎R.

Under periodic boundary conditions, it is possible for a
gel domain in a leaflet to connect to itself across one of the
periodic directions of the simulation box, creating a band of
gel, as shown in illustration (b) in Fig. 3. The non-extensive
free energy penalty is then simply

Δ𝐹𝛾 = 2𝛾𝐿 , (15)

where 𝐿 is the box length along the direction of the band (𝐿𝑦

in Fig. 3), independent of the size of the domain.
Whether or not a system will undergo phase separation

and coexistence at a given area ultimately depends on whether
the double-tangent free energy plus interface term is lower
than the homogeneous free energy (no Maxwell construction).
The equilibrium free energy for an individual monolayer in
the double-tangent region is therefore

𝐹m (𝑎,𝜎, 𝑁) = min

{
𝑁 𝑓m (𝑎,𝜎)
𝑁 𝑓 ∗m (𝑎,𝜎) + Δ𝐹𝛾

}
, (16)

where 𝑓 ∗m (𝑎,𝜎) is the convex envelope of 𝑓m (𝑎,𝜎). It is
important to bear in mind that the minimization in Eq. 16 must
be carried out over all possible forms of Δ𝐹𝛾 . Note also that
as the interfacial tension 𝛾 increases, the monolayer becomes
more likely to continue along the non-convex homogeneous
free energy, as can be seen clearly in Fig. 3.

In close analogy to Eq. 4, the total free energy for a
composite asymmetric system of finite size is then

𝐹 (𝑎,𝜎, 𝑁0; 𝛿𝑛) = 𝐹m

( 𝑎

1 + 𝛿𝑛 ,𝜎, 𝑁0 (1 + 𝛿𝑛)
)

+ 𝐹m

( 𝑎

1 − 𝛿𝑛 ,𝜎, 𝑁0 (1 − 𝛿𝑛)
)

. (17)

This is the free energy which must be used when calcu-
lating the gel fraction of an individual membrane leaflet in
order to obtain agreement with MD simulations, which are
often thermodynamically very small systems.

For completeness, we wish to point out that there is an
additional complication that arises in the case of a circular
domain. The two-dimensional version of the Young-Laplace
equation, Σm,in − Σm,ext = 𝛾/𝑅, tells us that the tension is
different in the two phases when the interface is curved. This
means that the area per lipid for these two phases is not
required to reside exactly on the end-points of the double-
tangent construction, which by definition correspond to states
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Figure 4: Illustration of the quantities involved in deriving the
coexistence-onset boundary approximation.

of equal tension, and is assumed in the lever rule. For this
situation, the equilibrium state is found by minimizing the free
energy while allowing the two phase areas to vary, subject
to the constraints given by the Young-Laplace equation and
that the sum of the two domain areas gives the total area.
This complication is considered in more detail in the work
by Tröster et al. (24). Fortuitously, this problem is not of
imminent concern in the present work. In our Martini model
simulations, the zero-curvature band state is the only observed
domain topology. For the Cooke model, we find that the
fluid-gel line tension 𝛾 is negligible, in the sense that among
the three contributions to a domain’s free energy—chemical
potential difference between the phases, stress reduction, and
line tension—the balance happens between the first two. This
is unusual from the point of view of classical nucleation
theory, where a bulk term competes against an interface term,
and it arises since nucleation is driven by bulk stress and
opposed by the creation of an unfavorable bulk phase.

An Analytical Result
Before charging ahead to numerical results based on simu-
lation data, let us take a moment to glean some analytical
insights from the framework now established. Its most im-
portant feature is the appearance of phase coexistence at a
temperature 𝑇pc slightly above the main phase transition, as
we have seen previously in the compressed van der Waals
subsystem. For an asymmetric membrane, this is the transition
to a state where finite gel domains appear in the otherwise
fluid compressed leaflet. Given 𝛿𝑛, what is the temperature
𝑇pc > 𝑇gel at which this occurs?

In the thermodynamic limit, this corresponds to finding
the combination of 𝛿𝑛 and 𝑇 (or rather, 𝜎, in our case) that
results in 𝑎+ being equal to the right end-point area of the
double-tangent, 𝑎R. Our first task then is to derive a simple
approximation for 𝑎R in terms of the known quantities used to

construct our free energy. Taking the two minima as parabolic
and using the definition of the double-tangent, one can show
that the area difference 𝛿𝑎 = 𝑎ℓ,fl − 𝑎R is approximately

𝛿𝑎 ≈ 1
𝑘𝐴,m,fl

Δ 𝑓0
Δ𝑎0

, (18)

where Δ𝑎0 = 𝑎ℓ,fl − 𝑎ℓ,gel and Δ 𝑓0 = 𝑓m (𝑎ℓ,gel) − 𝑓m (𝑎ℓ,fl)
are the area and free energy differences between the two
minima. Fig. 4 shows a schematic of the quantities involved.
Δ 𝑓0 = 𝜎Δ𝑎0 by construction in Eq. 11, and so we arrive at
the simple expression 𝛿𝑎 ≈ 𝜎/𝑘𝐴,m,fl. (Intuitively, a change
of 𝜎 changes the minimum by 𝜎/𝑘𝐴,m,fl but leaves the contact
point of the double tangent (approximately) unchanged.)

To reach our goal, we now must find an approximation
for 𝑎+ in terms of 𝛿𝑛, and then replace 𝛿𝑎 on the left hand
side of Eq. 18 with 𝑎ℓ,fl − 𝑎+ (𝛿𝑛). The condition of zero
bilayer tension Σ = 𝜕𝐹/𝜕𝐴 = 0 can be used to solve for the
equilibrium area of the bilayer as a function of asymmetry,
𝐴(𝛿𝑛), which in the Hookean approximation can be shown to
be 𝐴(𝛿𝑛) = 𝐴0 (1 − 𝛿𝑛2), where 𝐴0 = 𝑁0𝑎ℓ,fl is the rest area
of the bilayer at zero asymmetry (25). Substituting this into
the relation 𝑎+ = 𝑎/(1 + 𝛿𝑛) brings us to 𝑎+ = 𝑎ℓ,fl (1 − 𝛿𝑛),
and combining it with our previous result, the approximate
equation for the coexistence-onset boundary is the remarkably
simple expression

𝑎ℓ,fl𝛿𝑛 ≈
𝜎

𝑘𝐴,m,fl
. (19)

We can re-express this in terms of temperature using Eq. 13
to produce our final result,

𝛿𝑛 ≈ Δ𝑞m
𝐾𝐴,m,flΔ𝑎

(
𝑇pc

𝑇gel
− 1

)
, (20a)

or equivalently,

𝑇pc ≈ 𝑇gel

(
1 + 𝐾𝐴,m,flΔ𝑎

Δ𝑞m
𝛿𝑛

)
. (20b)

in which we have made use of 𝐾𝐴,m,fl = 𝑎ℓ,fl𝑘𝐴,m,fl. The
prediction in Eq. 19 was used to generate the dashed lines
in Fig. 5, further distinguishing the finite-size results from
the thermodynamic limit and displaying that the slope of the
phase boundary remains nearly the same for finite systems.

Within the same approximate regime, it can also be shown
that the differential stress ΔΣ = Σ> − Σ< = 2𝐾𝐴,m,fl𝛿𝑛. By
substituting this into our previous result, we find the phase
coexistence temperature as a function of the differential stress:

𝑇pc ≈ 𝑇gel

(
1 + ΔΣΔ𝑎

2Δ𝑞m

)
. (21)

Let us look at a specific case to get a sense for how big
this effect is, taking DPPC and its transition from the fluid
into the ripple phase at 41 °C as an example. The change in
area per lipid has been measured as Δ𝑎 = 0.15 nm2 (26) and
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the specific latent heat as Δ𝑞 = 8.1 kcal/mol (27). Taking
𝐾𝐴,m,fl = 120 mN/m (half a typical bilayer value (28)) and
assuming (somewhat more daringly) that Δ𝑞m = Δ𝑞, we find
that the onset of phase coexistence lies above the main phase
transition by an amount

𝑇pc − 𝑇gel ≈ 1 K × 𝛿𝑛

1%
≈ 0.44 K × ΔΣ

mN/m
. (22)

Each percentage point in asymmetry 𝛿𝑛 raises the temperature
difference by about 1 degree; or alternatively, each additional
mN/m in differential stress raises it by a little less than half
a degree. Since Ref. (15) argues that spontaneous curvature
differences across leaflets can give rise to differential stresses
of several mN/m, temperature differences in the few degree
range appear quite achievable.

Simulations
In order to evaluate the validity of the theory developed in the
previous section, we performed molecular dynamics (MD)
simulations of asymmetric lipid bilayers using two coarse-
grained (CG) lipid models: Martini (29) and a “flip-fixed”
version of the Cooke model, modified to allow the simulation
of differentially stressed membranes (25). Both models were
run in anisotropic cuboid boxes such that 𝐿𝑥 > 𝐿𝑦 , with
𝐿𝑧 being the box height in the bilayer normal direction.
Fluctuations in area were only allowed to occur along the 𝑥-
direction of the box, with 𝐿𝑦 being held fixed. This anisotropic
setup coaxes any gel domain large enough to connect via
periodic boundary conditions to first do so along the shorter
but inert 𝑦-direction. The resulting gel-band can easily change
its size by changing its width, and it does not interfere with
tension- and area-control along 𝐿𝑥 (30).

From these simulation trajectories we extracted the (pro-
jected) area per lipid, as well as gel and fluid fractions of the
individual monolayers. Gel phase lipids were identified using
a Hidden Markov Model (HMM) in a similar spirit to previ-
ous work by Sodt, et al. (31, 32). HMM methods were also
used to separate trajectory snapshots belonging to different
meta-stable states between which the systems alternated. For
all quantities measured from sampled simulation data, after
initial transient behaviors have decayed away we calculated
the error of the mean using a block averaging procedure (33)
in order to correct for time correlation in the equilibrium time
series.

Given that the two leaflets generally contain an unequal
number of lipids, one might expect the resulting bending
torques to curve the membrane and lead to buckled shapes.
However, this cannot happen under periodic boundary con-
ditions—at least not for small deviations from the flat state.
The reason is that the area difference is proportional to the
integral of the mean curvature, which in Monge gauge is a
total divergence. Via Gauss’ theorem, this integral can be
shifted to the boundary, where the two contributions from
opposite sides subsequently cancel. Hence, to lowest order

shape changes cannot relax bending torques.

Martini Simulations
Coarse-grained Martini simulations were carried out using
the martini_2.1 force field in GROMACS 5.1 (34) for systems
containing a total of 800 DLPC lipids at a temperature of
𝑇 = 297.5 K and a pressure of 1 bar, with 𝐿𝑦 = 8 nm. For
𝛿𝑛 = 0, ⟨𝐿𝑥⟩ = 28.41 nm. We used a time step of 𝛿𝑡 =

20 fs and a 1.4 nm Verlet cutoff neighbor list updated every
10 steps. The relative dielectric constant was set to Yr =

15. Temperature control was achieved using a Berendsen
thermostat (35) with a time constant 𝜏𝑇 = 1 ps, with pressure
controlled along the fluctuating coordinate directions using
a Berendsen barostat (35) with time constant 𝜏𝑃 = 3 ps and
isothermal compressibility ^𝑇 = 3×10−5 Pa. Simulations were
run for 20 values of the asymmetry parameter 𝛿𝑛 evenly spaced
between 0% and 4.75%. These systems were equilibrated for
80 ns followed by 1.6 µs production runs.

Cooke Simulations
Similar simulations were carried out using the flip-fixed Cooke
CG lipid model (25, 36). Simulations containing 800 (generic)
lipids were carried out at a temperature of 𝑘B𝑇 = 1.36 Y using
a Langevin thermostat with friction constant of Γ = 1.0 𝜏−1,
and conditions of zero bilayer tension controlled by a modified
Andersen barostat (37). The time step was set to 𝛿𝑡 = 0.005 𝜏,
and 𝐿𝑦 was fixed at 16 𝜎∗ (𝜎∗ being the CG length unit,
not to be confused with tension). The 𝛿𝑛 = 0 simulation
resulted in ⟨𝐿𝑥⟩ = 28.50𝜎∗. Individual runs were of duration
105 𝜏, with the first 2 × 104 𝜏 being excluded from analysis as
equilibration. Simulations were run for 10 values of asymmetry
spaced evenly from 1% to 10%. All Cooke model simulations
were run using the ESPResSo MD package (38).

Hidden Markov Models
In order to compare the theoretical gel fraction values to those
in simulation, we used a Gaussian HMM to classify each
lipid into one of two states at each trajectory output step,
interpreted as being either in the gel or in the fluid phase. This
is an unsupervised learning process that is trained on chosen
features that contain relevant information for each lipid at
each step of a Markov process. All HMM calculations were
carried out using the python package hmmlearn (39), which
implements the Baum-Welch algorithm (40) for learning the
model parameters and the Viterbi algorithm (41) for estimating
the most likely hidden states along a trajectory.

For both Martini and Cooke, the primary feature of interest
for a given lipid is the (magnitude of the) local hexatic order
parameter, |𝜓6 |, defined by

|𝜓6 | =
����� 1
𝑁

𝑁∑︁
𝑘=1

𝑒6𝑖 \𝑘

����� , (23)

where 𝑁 is the number of neighbors and \𝑘 is the angle to
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neighbor 𝑘 from a fixed axis. |𝜓6 | takes on values between
0 and 1, with 1 corresponding to a perfectly ordered hexatic
crystal. For Martini, this order parameter is defined on a per-
lipid-tail basis, whereas for Cooke (which lacks the distinction
of separate tails) it is per-lipid. For the Cooke model, we
found it necessary to include more training features in order
to successfully infer lipid phases. These included the area per
individual lipid, as determined by the lipid’s Voronoi cell, as
well as the distance to its nearest neighbor. Calculation of
Voronoi diagrams and kd-trees for efficient nearest-neighbor
lookup were carried out using built-in functions provided by
SciPy (42). Each HMM (one for each CG model) was trained
on a simulation state point where fluid-gel coexistence had
been visually observed, and then this trained model was used
to infer lipid states in all other simulations for that model.
An example of state labeling of a snapshot from a Cooke
simulation is shown in Fig. SI 1.

When meta-stable state-switching was observed in Cooke
simulations, we implemented a HMM trained on instantaneous
area in order to classify individual trajectory steps into 3 states,
interpreted as high area, low area, and transitional (see Fig. SI
2). For the Martini simulations, the HMM was trained on
the overall fraction of gel in the compressed leaflet of the
membrane in each snapshot. In Fig. 6, simulations with meta-
stable state switching have two data points, with the black
(stable) data point being the one in best agreement with the
theory. Only the black data points were used in the fits shown.

Fitting to Theory

Of the parameters appearing in the finite-size free energy,
𝐾𝐴,m,fl, 𝐾𝐴,m,gel, 𝑎ℓ,fl, and 𝑎ℓ,gel are fairly easily measured
in symmetric membrane simulations at temperatures above
and below the gel transition as appropriate, and extrapolated
to obtain approximate values at a given state of interest.
The remaining quantities 𝑏,𝜎, and 𝛾 are trickier, and so are
determined by fitting to data from a series of asymmetric
simulations. In principle, if the monolayer specific latent
heat Δ𝑞m and gel transition temperature 𝑇gel are known with
precision, 𝜎 can be approximated from Eq. 13, and need not
be a fitting parameter. However, in what follows we infer 𝜎
from the fit, allowing the fitting process to find the effective
tension value corresponding the to the simulation temperature.

There is some choice available in what data is used for
fitting. Two important quantities we measured in simulation
for which we can also make predictions with this theory are
the membrane area (or reduced area 𝑎) as a function of 𝛿𝑛, as
well as the gel fraction of an individual leaflet as described
above. Calculating these amounts to finding (numerically)
the area which minimizes the free energy for the system and
applying the lever rule for each individual monolayer.

Figure 5: Gel fraction of compressed (+) leaflet of an asym-
metric bilayer. Yellow corresponds to 0% gel (100% fluid),
dark blue to 100% gel, with intermediate values given by color
gradient (fluid-gel coexistence). Thick dark lines indicate the
locations of discontinuous changes in gel fraction (and area).
The thin dashed line indicates the coexistence-onset boundary
in the thermodynamic limit as predicted by the approximation
in Eq. 19. The parameters used to generate these diagrams
come from fitting to membrane area data from simulations
of 800 lipids. Top: Martini DLPC lipids at 297.5K. Bottom:
Asymmetric Cooke lipids at 𝑘B𝑇 = 1.36Y. Simulation state
points are indicated by the green dots (data in Fig. 6).

RESULTS
Fig. 6 displays plots of the relevant data for our theoretical
model from both Martini and Cooke simulations. The upper
plots show the reduced area per lipid of the two leaflets (the
independent variable 𝑎 = 𝐴/𝑁0 in Eq. 17) as a function
of asymmetry 𝛿𝑛. The plotted blue curves are fits to the
equilibrium area predicted by our theory, with optimal pa-
rameters found to be 𝛾 = 0.54 𝑘B𝑇/nm, 𝜎 = 0.747 𝑘B𝑇/nm2,
and 𝑏 = 0.729 for Martini, and 𝛾 = 3.5 × 10−3𝑘B𝑇/𝜎∗ and
𝜎 = 0.50 𝑘B𝑇/𝜎∗2 for Cooke. One complication arising in
the fitting process for the Cooke model was the influence of
an extremely low line tension 𝛾 on the fitting of the barrier
height parameter 𝑏. A value of 𝛾 ≪ 𝑘B𝑇/𝜎∗ results in the
finite-size free energy being nearly identical to the thermo-
dynamic limit case, in which the non-convex part of the free
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Figure 6: (a) Area of Martini DLPC membrane (black circles)
at 297.5K as a function of asymmetry along with curve of
best fit (blue) to finite-size membrane theory. (b) Fraction of
compressed leaflet identified to be in gel phase (black circles)
as a function of asymmetry along with prediction by finite
size theory (blue) using parameters from the fit in the top
figure. (c) and (d) are the equivalent plots for the asymmetric
Cooke model at 𝑘B𝑇 = 1.36Y. Red points indicate meta-stable
states also visited during the simulation trajectories. For all
simulation results, the area measurements are of the projected
area of the membrane (the area of the principle simulation
box).

energy is replaced with the double-tangent line. In this region
of parameter space, the value of 𝑏 has essentially no impact
on the predicted area and gel fraction, as the barrier is flat-
tened to a line regardless of its height. As a result, 𝑏 values
obtained in fitting are essentially meaningless, with very large
uncertainties. For this reason, fits for the Cooke model were
performed with 𝑏 = 1, the value for which the homogeneous
free energy is smoothest. The value of 𝑏 is meaningful for the
Martini systems, however, as the sizeable line tension leads
to the realization of homogeneous barrier states not observed
in the thermodynamic limit, resulting in obvious changes in
the behavior of the system’s area and phase composition as
𝛿𝑛 is varied.

Looking at the results qualitatively, for Martini the area
rises slowly before sharply dropping between 3.5% and 3.75%
asymmetry, and continuing downward thereafter. This sharp
transition corresponds to the compressed leaflet transitioning
from a uniformly strained fluid to a fluid and gel band coexis-
tence state (see schematic b in Fig. 3). This behavior is clearly
seen in simulation snapshots, and quantitatively identified by
local changes in hexatic order and area per lipid. The Martini
system never exhibits stable circular gel domains in these
simulations, and instead goes directly from uniform fluid to
gel band. This is largely a consequence of the simulation
geometry, combined with a sizable line tension between the
fluid and gel phases, as by the time a circular domain of gel

would be stable, the domain would be large enough to connect
across the short periodic box direction and form a band.

The Cooke data do not show a pronounced discontinu-
ous transition, but rather a nearly continuous transition from
uniformly strained fluid to fluid-gel coexistence. This is due
to a remarkably low line tension between the fluid and gel
phases, resulting in essentially negligible finite-size correc-
tions as mentioned before. Such a low line tension is likely
attributable to the ultra coarse-grained nature of the Cooke
model. Additionally, the robustness of the Cooke model al-
lowed us to simulate to high enough asymmetry values that
the compressed leaflet becomes entirely gel-phase, which
occurs beyond 𝛿𝑛 ≈ 9%. One may also notice that the area
of the membrane trends slightly upward for the first few 𝛿𝑛

values, which is not captured by the theoretical fit. This is
potentially due to the omission of higher-order area elasticity
terms from the free energy, which were previously shown to
remedy the discrepancy between Hookean predictions and
simulation measurements of membrane area (25).

The lower plots in Fig. 6 show the fraction of the com-
pressed leaflet identified by HMM as being in the gel phase,
along with the theoretical prediction for the gel fraction based
on the optimal parameters from the fit in the top figure. It
can be seen that the parameters obtained from the area fitting
produce very good agreement between predicted and observed
phase coexistence.

DISCUSSION AND CONCLUSION
When the possibility of number asymmetry is allowed for a
tensionless single-component lipid membrane, novel regions
can appear in the phase diagram at temperatures sufficiently
close to the main phase transition exhibiting the stable co-
existence of fluid and gel domains. This phenomenon can
be explained using very generic thermodynamic arguments
(20). In fact, it should occur in the vicinity of any first-order
phase transition exhibiting some “parallel coupling” of its
extensive variable, as we have illustrated with our van der
Waals “warm-up”. In the case of membranes we required a
few straightforward assumptions about the free energy of lipid
monolayers near their main phase transition, but the basic
phenomenology is independent of those.

The theory as framed thus far provides a method of pre-
dicting the gel content of individual leaflets as a function
of imposed bilayer asymmetry. However, perhaps more in-
teresting is the reverse: inferring bilayer asymmetry from
observation of fluid-gel coexistence in the compressed leaflet
of a bilayer. Differential stress is a difficult quantity to measure
directly, because it is unclear how one would set up a mechani-
cal coupling to a single leaflet. The framework presented here
offers an indirect way of probing this aspect of asymmetry,
potentially providing a way of calibrating asymmetric vesicle
preparation methods with regard to the number asymmetry of
the resultant membranes. This could be through measurement
of the gel fraction of a leaflet, and subsequent matching to

Manuscript submitted to Biophysical Journal 9



Foley, Hossein, and Deserno

asymmetry by mapping out phase diagrams like those in Fig. 5.
Alternatively, via slowly cooling fluid membranes one could
observe the temperature of the onset of coexistence, which
can be mapped to asymmetry by the simple approximation
of Eq. 20, or to differential stress via Eq. 21. The practical
feasibility of specific measurement strategies is another sub-
ject in its own right, but there at least now exists a connection
between asymmetry and more readily observable quantities.

The phenomenon of the main phase transition in lipid
bilayers being broadened from its sharp first-order nature is
not in itself new (20, 22, 43). Markin and Kozlov proposed
a theoretical explanation for the case where the transitions
in the two leaflets are, for whatever reason, de-tuned from
one another and the constraint due to elastic coupling forces
a compromise. As a result, the main transition appears to
be “smeared” over a temperature range that could be quite
large if the two leaflets differ markedly in their 𝑇gel (20). The
analysis developed in Ref. (20) differs somewhat from ours,
and does not investigate an elastic mismatch due to unequal
lipid packing as a source of the de-tuning. All the same, it
is important to bear in mind that fluid-gel coexistence in
monolayers can be influenced by many factors, such as ion
concentration in solution, as explored in their work.

The presence of gel domains significantly increases the
effective bending modulus of the bilayer when measured in
buckling simulations, and this phenomenon will likely have im-
plications for experimental systems (16). Care must be taken,
however, when trying to extrapolate these results to larger
experimental systems, such as GUVs. The precise behavior
of the gel domains in the compressed leaflet will determine
whether the membrane as a whole appears to have a larger
“effective” bending modulus or whether it must be treated as
an inhomogeneous composite material. Definitive predictions
in this regime would require consideration of physical pro-
cesses not included in our model, such as curvature-mediated
interactions between domains—a topic of potential future
work.

Our current focus has been on the behavior of the com-
pressed leaflet of the bilayer, even though the same equations
yield predictions for the stretched leaflet as well. However,
unlike the compressed leaflet, potentially interesting new
behavior will only occur in the stretched leaflet for temperar-
tures below the main phase transition, where the compressed
leaflet is entirely in the gel phase. We are therefore hesitant
to read too much into predictions in this regime given that
the present theory includes no notion of inter-leaflet coupling,
and one may well expect a leaflet entirely in the gel phase
to significantly affect the behavior of its opposing leaflet.
These state points also present a challenge with regard to the
equilibration of gel-phase membranes in a simulation, as well
as being experimentally difficult to work with. Additionally,
the conditions of most interest to biology are those above the
main transition, as the membranes of living organisms almost
invariably exist primarily in the fluid phase (44).

At this point it bears mentioning that the present theory,

while capturing key qualitative features of the underlying
physics, ignores a number of effects that could impact a quan-
titative comparison with experiments. One notable element
is the interplay between differential stress and a difference
in spontaneous leaflet curvature. In practice, these two phe-
nomena should go hand in hand, in fact offset one another, for
otherwise it is hard to explain how one can routinely create
micron sized asymmetric vesicles in experiment without them
immediately creating tubules due to typically large unbal-
anced bending torques (15). Further, biological membranes
are composed of mixtures of a variety of lipids with wide-
ranging properties, generally with pronounced composition
asymmetry between the two monolayers (4), so that this type
of torque compensation is likely to play a role in biomembrane
elasticity.

For the specific situation discussed here—the emergence
of gel domains—this issue arises in a particularly transparent
way, because the tighter lipid packing in gel phases not only
increases their rigidity but almost certainly also changes their
spontaneous leaflet curvature (likely making it more positive,
since the tails condense more than the heads; but no hard
data seem to exist about this). Hence, the appearance of gel
domains in only one leaflet should affect the local membrane
shape. This is beyond the purview of our present theory, but
it could matter for the macroscopically observable states, for
instance because sufficiently large gel domains could repel
each other via curvature mediated interactions and thus remain
finite. Beyond that, the contact between a gel and a fluid leaflet
should also have rather basic thermodynamic implications
due to non-elastic inter-leaflet interactions (which we ignore).
For instance, we expect that the presence of a fluid leaflet
lowers the transition temperature in the gel leaflet (it is slightly
harder to order in the presence of a fluctuating partner), while
the opposite happens for the fluid leaflet. Incorporating these
considerations into the present model will be the subject of
future work.

While gel phases only play a small role in biology, coex-
isting domains of liquid ordered phases embedded in a liquid
disordered matrix are a widely discussed framework for un-
derstanding lipid rafts. They have been extensively studied in
experiment (45–50) theory (51–56) and simulation (57–61),
including in the compositionally asymmetric case (62–66).
In the present context, this 𝐿o/𝐿d transition is particularly
intriguing because its much smaller latent heat (compared to
the gel/fluid transition) renders the slope of the phase bound-
ary, (dΣ/d𝑇)pb, almost an order of magnitude smaller (this is
confirmed by both the Clausius-Clapeyron equation as well
as direct measurements (67, 68)). Because of this, differential
stress should move the transition temperature about an order
of magnitude more strongly: the quite achievable (15) value
ΔΣ = 4 mN/m should result in a huge shift of about 10 °C.
This is not only eminently measurable but highly biologically
significant, considering that nature seems to place cell mem-
branes between 10 °C and 35 °C above the temperature of
phase separation (69, 70)—larger but not too much larger than
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Table 1: Glossary

Symbol Description

( )± subscript denoting quantity in compressed (+) or
expanded (–) subsystem

( )m subscript denoting monolayer quantity
( )fl/gel subscript denoting quantity in fluid/gel phase
𝑎 reduced area, defined analogously to 𝑣
𝑎ℓ equilibrium area per lipid
𝑏 barrier height in monolayer free energy ansatz
𝐾𝐴 area compressibility modulus
𝑘𝐴 reduced area modulus, 𝐾𝐴/𝑎ℓ
𝛿𝑛 number asymmetry parameter, defined in eqn. 1
𝑁0 average number of molecules per subsystem
𝑇lv liquid-vapor phase transition temperature
𝑇gel fluid-gel phase transition temperature
𝑇pc temperature of onset of phase coexistence, eqn. 20
𝑣 reduced volume, defined in eqn. 5
𝛾 fluid-gel line tension
Y energy unit in CG Cooke model simulations
𝜎 pre-tension/temperature analog in monolayer free

energy ansatz
𝜎∗ length unit in CG Cooke model simulations
Σ± monolayer tension of respective leaflet (±)
Σ bilayer net tension, Σ = Σ+ + Σ−
ΔΣ differential stress, ΔΣ = Σ> − Σ<

the changes that can alternatively be driven by differential
stress.

We have demonstrated, generically, the theoretical basis of
asymmetry-dependent behavior of first order phase transitions
in bilayers. While our model is currently idealized, it allows
for the inclusion of additional free energy terms coupling to
other relevant membrane properties, providing an avenue for
improving the theory. Given the recent explosion of interest in
asymmetric membranes, in particular differentially stressed
ones, we hope this work will help to draw attention to an
otherwise well-obscured aspect of membrane mechanics,
and inspire continued work striving to elucidate the role of
membrane asymmetry in biology.

Glossary
In table 1 we provide a glossary of symbols and notations
used throughout the text. It is not comprehensive, but attempts
to clarify items with the most potential for confusion.
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