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Abstract

We present a version of the coarse-grained Cooke lipid model, modified to simulate

asymmetric lipid membranes. It is inspired by a method employed by Wang et al.

[Comm. Comp. Phys. 13, 1093 (2013)] for artificially penalizing lipid flip-flop, but copes

more robustly with differential stress, at the cost of one additional bead per lipid and

the concomitant increase in computational overhead. Bilayer asymmetry ultimately

breaks down beyond a system size dependent critical differential stress, which can be

predicted from a simple analytical model. We re-measure many important material

parameters for the new model and find it to be consistent with typical fluid lipid

membranes. Maintaining a stable stress asymmetry has many applications, and we

give two examples: (i) connecting monolayer stress to lipid number asymmetry in order

to directly measure the monolayer area modulus, and (ii) finding its strain-dependent

higher-order correction by monitoring the equilibrium bilayer area.
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1 Introduction

1.1 Motivation

In many situations of biological interest, the lipid bilayers that form the structural basis

of biomembranes feature an asymmetric distribution of lipids across their leaflets.1–4 For

instance, much of the phosphatidylcholine and most of the sphingomyelin content of the

plasma membrane of nucleated cells can be found in the outer leaflet, while the majority of

phosphatidylethanolamine and especially phosphatidylserine resides in the inner one.3 This

situation is remarkable, because such an asymmetric distribution is not in thermal equilib-

rium:5 upon being prepared in some asymmetric state, a lipid bilayer will generally decay

toward a symmetric one, in which the lipid species are mixed across both leaflets, because

this maximizes entropy and equilibrates the lipids’ chemical potential between leaflets. The

dynamical process for achieving this compositional relaxation happens via many individual

events, whimsically termed lipid “flip-flop”: the transbilayer motion by which individual

lipids move through the center of the bilayer to transition to the opposite leaflet. As this

process perturbs local lipid order and temporarily forces the transitioning lipid’s hydrophilic

head group deep into the membrane’s hydrophobic core, lipid flip-flop is associated with a

sizable free energy barrier that strongly depends on lipid type.6 Indeed, the time scale over

which this process takes place tends to be fairly long compared to many other membrane-

related processes (such as remodeling, fission, or fusion). The precise rate constants again

vary by lipid species and context, but are often on the order of hours in biologically relevant

systems.7

Of course, cells live longer than hours. Maintaining their asymmetric membrane composi-

tion therefore requires active processes that work against the thermal driving forces towards

a symmetric equilibrium. Conversely, cells may also require a local relaxation of lipid asym-

metry on time scales much shorter than what thermodynamics has to offer, for instance

because phospholipid synthesis mostly occurs in the cytoplasmic leaflet of the endoplasmic
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reticulum,8 which hence requires a translocation of almost half of all lipids towards the other

leaflet. Indeed, cells have evolved a dedicated machinery for exercising control over the trans-

leaflet lipid distribution: ATP-dependent (i.e., energy consuming) flippases and floppases,

which are transmembrane proteins that transport lipids (even against a gradient of chemical

potential); and passive lipid scramblases, which are transmembrane proteins that catalyze

lipid translocation but do not bias its directionality.5,8

This quick overview shall suffice to argue that cells make a significant effort to create and

maintain their membranes in a precisely calibrated asymmetric state. While clearly linked

to a variety of biochemical needs, this also affects more basic questions, such as the phase be-

havior or elasticity of such asymmetric bilayers. However, probing these issues by performing

experiments on actual biomembranes in cells, or patches excised out of cells, proves to be a

coin with two sides: while clearly being as realistic as it gets, the intricacy of the real situation

(complex lipid mixtures, embedded and adsorbed proteins, connections to the cytoskeleton,

etc.) makes it almost impossible to analyze and explain the data using quantitative pre-

dictive models, thus rendering measurements less clear-cut than one would otherwise hope.

Thankfully, recent breakthroughs9–16 in the preparation of asymmetric model membranes

with controllable leaflet composition have opened up a middle road: systems that reflect

some of the key aspects also present in biology, while sidestepping numerous confounding

factors that haunt the analysis of real biomembranes. The availability of such model systems

is a major reason for the renewed interest in the question of asymmetry.

Experiments provide the only direct access to nature, but they are also constrained by

physical or technical circumstances, such as diffraction limits, control of state- and boundary

conditions, or purity of sample preparation. As a partial way around such nuisances, molec-

ular dynamics simulations provide a complementary method of insight into many questions

of interest. Provided one accepts the underlying model (not at all a trivial matter, but let

us sidestep this discussion here), simulations afford a look at a system’s precise state that is

unencumbered by many experimental restrictions. Their biggest impediment are the acces-
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sible length- and time scales, which may frequently be too small or too short (or both). This

has been one of the major driving forces for the development of coarse-grained models17–22

that strive to capture the essence of a given physical situation simpler and more efficiently,

which in turn makes the study of larger systems over longer time scales feasible.

The challenge of balancing accessible system size against required molecular resolution

can be nicely illustrated by the case of asymmetric membranes. On the one hand, a model

needs to feature enough resolution for the notion of different membrane components to be

meaningful; on the other hand, many aspects of asymmetry (say, large scale shape deforma-

tions driven by an asymmetric membrane’s spontaneous curvature) do not depend on fine

chemical detail but only on fairly coarse features: density differences, overall lipid shape, or-

der parameter, etc. Hence, asymmetric membranes are a good example where much insight

could be gained by relatively low-resolution modeling. However, as one progresses along the

axis of ever simpler and more efficient lipid models, an entirely new problem arises that is

quite unrelated to the usual question of systematic coarse graining (i.e., how well can we

represent the equilibrium phase space distribution of an atomistic system with a smaller

number of degrees of freedom21). The problem is that coarse grained lipid models tend to

have much higher flip-flop rates compared to real systems. What this statement precisely

means is actually not entirely trivial in the context of a coarse-grained model, since it re-

quires a discussion of how coarse-grained units map to SI units. We will discuss the essence

of this problem in Section 2.5 below.

If we are only interested in equilibrium properties, a strongly increased flip-flop rate need

not be a problem; it might at times even be advantageous in order to achieve equilibrium

(e.g., when creating vesicles and not having to worry exactly how many more lipids one

needs to place in the outer leaflet relative to the inner one, as the correct difference will

adjust automatically by flip-flop). But if we are interested in asymmetric bilayers, and hence

wish to study a metastable but fairly long-lived state, it is a distinct problem if its lifetime

is significantly cut short—possibly by many orders of magnitude, and thus conceivably so
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short that it cannot be investigated at all.

The problem just described tends to increase in severity as the membrane model de-

creases in resolution. This is awkward if one is interested in the large-scale implications of

asymmetry: the more large-scale the question, the more coarse-grained the model one may

wish to use, but the subsequent inability of such models to maintain lipid asymmetry then

defeats the original point of the study. Hence, one must either find a way to proceed with

a more refined model (i.e., make do with smaller systems or figure out how to run big ones

more efficiently), or find a way to suppress flip-flop in highly coarse-grained models. In this

paper we will look at the second strategy. Specifically, we focus on the highly coarse-grained

implicit solvent model due to Cooke et al.,23,24 in which a lipid is represented by three ef-

fective beads; one acting as the head group, and two beads comprising the tail region. This

model has been used fruitfully to investigate a wide range of bilayer elastic phenomena and

membrane interactions with proteins and nanoparticles in a generic setting, and hence it

would be desirable to have a “version” of it that is much better at maintaining an imposed

lipid asymmetry, maybe even in cases where a differential stress creates an active driving

force for flip-flop.

1.2 How to Suppress Lipid Flip-Flop

Lipid flip-flop is a typical example of an event that requires crossing a free energy barrier.6

Since for such a process the transition rate depends exponentially on the barrier height,25,26

the obvious way to strongly increase the lifetime of asymmetric states is to increase this free

energy barrier—for instance by including additional interaction potentials that energetically

penalize configurations that occur at the transition state but do not contribute significantly

to equilibrium states. This is the “kinetic solution” illustrated in the upper right panel of

Fig. 1. One could for example make the interaction between a coarse-grained hydrophilic

head-bead and the hydrophobic tail-beads of the bilayer interior even more unfavorable.

This approach to reducing the flip-flop rate, while conceptually straightforward, proves
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rather difficult in practice for highly coarse-grained models like the Cooke model. With only

three beads per lipid to work with, it is very difficult to introduce a force to keep lipids out

of the center of the bilayer without detrimentally impacting the equilibrium properties of

the original model that made it useful. Stated differently: in such a highly coarse-grained

model, transition states are difficult to separate from equilibrium states due to the strongly

reduced dimensionality of phase space. Any changes in interaction potentials designed to

affect the region in phase space that contains transition states will invariably “spill over”

into regions of phase space that describe equilibrium states.

Bearing this in mind, we instead follow a strategy that works by tweaking equilibrium

states, as indicated in the lower right panel of Fig. 1. The key idea, originally proposed and

successfully implemented by Wang, Hu, and Zhang (or “WHZ” in the following), is to label

lipids by which leaflet they originally belong to, and introduce a penalty for opposite “type”

lipids being adjacent in the same leaflet.27 Observe that this would create a distinction even

between chemically identical lipids, since the purpose of the label is to preserve memory of

an initial condition. The goal is to ensure that same-type-lipids residing in the same leaflet

interact in a manner identical to the original model, while a lipid flipping into the “wrong”

leaflet (meaning, not the one it originally started in) encounters unfavorable interactions

with its “wrong” neighbors that drive it back into the “right” leaflet.

The original WHZ-fix for the Cooke model consisted of turning off the attraction between

middle beads for lipids belonging to different leaflets. This indeed works; but we will show

that once we introduce even a modest differential stress between the two leaflets—a situation

that might easily arise in asymmetric membranes28—the equilibrium stress asymmetry falls

behind the imposed one, and beyond a critical point one even finds domains of the “wrong”

lipids residing in their non-host leaflet, dramatically reducing the imposed asymmetry. We

discuss ways for how to quantify and predict this break-down, and propose as a simple

solution the introduction of a second “middle” bead, which pushes the break-down to much

higher stress asymmetries. We then measure several key material properties of the modified
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Figure 1: Schematic illustration for the two different ways to stabilize bilayer asymmetry.
The curves show a lipid’s free energy F as a function of its center of mass coordinate z across
the bilayer, with the two minima corresponding to the two leaflets. If the free energy barrier
separating them is too low, one can either attempt a kinetic fix that artificially increases
it, or an equilibrium fix that artificially increases the free energy of a lipid in the “wrong”
leaflet, thus explicitly breaking the symmetry of the situation. For highly coarse-grained
systems the latter approach is more practical.

4-bead flip-fixed Cooke model and employ it to investigate some examples of asymmetry

dependent elastic physics.

2 Methods

2.1 The Standard Cooke Model

The Cooke model is a highly versatile implicit solvent generic lipid model for simulating

bilayer membranes.23,24,29 Careful measurements of its mechanical properties exist, includ-

ing the bending rigidity,24,30,31 Gaussian curvature modulus,32 pivotal plane position,33 tilt

modulus,34 and curvature softening;35 and it has been used to shed light onto a variety of

biophysical and biomedical situations, such as curvature36 and composition37 mediated in-

teractions, antimicrobial peptide insertion,38 lipid curvature sorting,39 dynamin-driven mem-

brane fission,40 nanoparticle coating,41 receptor-mediated endocytosis,42 and soft nanopar-

ticle wrapping.43

For ease of reference, let us briefly recount the basics of the model, focusing on the
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aspects that will be important in understanding the modifications to be made later. A more

detailed description of the Cooke model and the rationale behind its design can be found in

the original references.23,24

Individual lipids are generically represented by a string of three coarse-grained beads, one

representing the hydrophilic head group, and two comprising the tail region. The beads are

held together by finite extensible nonlinear elastic (FENE) bonds with interaction potential

given by

Vbond(r) = −1

2
kbondr

2
∞ log

[
1−

(
r

r∞

)2
]
, (1)

where the maximum bond range r∞ = 1.5σ, with σ being the unit of length in our coarse-

grained system, and kbond = 30 ε/σ2, with ε being the unit of energy. To keep lipids relatively

straight, a harmonic spring with rest length 4σ and spring constant kbend = 10 ε/σ2 is used

between the head bead and terminal tail bead,

Vbend(r) =
1

2
kbend(r − 4σ)2 . (2)

The head beads interact through a purely repulsive Weeks-Chandler-Anderson (WCA) po-

tential, given by

Vrep(r) =

 4ε
[(

b
r

)12 −
(
b
r

)6
+ 1

4

]
, r ≤ rc

0 , r > rc

(3)

with rc = 21/6b. The original model uses bhead,head = bhead,tail = 0.95σ, and btail,tail = σ.

In the absence of explicit solvent molecules, the hydrophobic effect is mimicked by an

extended-range cohesive interaction between the tail beads of the lipid molecules. Especially

the tunability of the range is crucial, since a mere Lennard-Jones attraction proved to be too

short-ranged to stabilize a fluid phase.24 As an alternative functional form, Cooke et al.23

chose a half-period of a cosine, which also allows the potential to go smoothly to zero at a
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Figure 2: Head-bead interaction potential Vrep(r) (dashed) and tail-tail interaction Vrep(r) +
Vcos(r) (solid), plotted for b = 1.0σ,wc = 1.6σ. Inset image: in the WHZ-modified Cooke
model the potential between middle beads that initially belong to opposite leaflets is changed
from Vrep + Vcos to Vrep.

finite range:

Vcos(r) =



−ε , r < rc

−ε cos2
[

π
2wc

(r − rc)
]
, rc ≤ r ≤ rc + wc

0 , r > rc + wc

. (4)

The sum Vrep(r) + Vcos(r) yields a smooth (once differentiable) attractive potential similar

to the standard LJ interaction, but with a range that can be tuned via wc.

2.2 WHZ Modification

As explained above, the WHZ modification to the Cooke model consists of artificially intro-

ducing two different classess of lipids on the two leaflets and eliminate the Vcos interaction

between the middle beads of opposite-leaflet classes.27 WHZ needed this modification be-

cause they wanted to measure the spontaneous curvature of a bilayer consisting of different

lipids in the two leaflets. To create different regions along the membrane with different spon-

taneous bilayer curvature, this also required them to add additional interactions that drove

phase separation, which also helped to keep not just the phases but also the “sidedness”

intact.

Let us begin by testing the effectiveness of the WHZ modification, but under circum-

9



0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Imposed Asymmetry n0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ob
se

rv
ed

 A
sy

m
m

etr
y 

n

0%

10%

Figure 3: Observed lipid asymmetry 〈δn〉 as a function of imposed one, δn0. Red triangles:
simulation using the WHZ-modified Cooke model (at kBT = 1.1 ε and wc = 1.6σ); the range
on each data point indicates the standard deviation of the observed asymmetry, not the error
of its mean. Magenta curve: fit of Eqn. (11) in the regime of break-down to the WHZ data;
the shaded region indicates one standard deviation in the fitting parameter. Green curve:
again Eqn. (11), but plotted instead using measured values of γ and KA,m from separate
simulations. Black circles: average asymmetry measured in simulation using our new 4-bead
flip-fixed Cooke model (at kBT = 1.4 ε and wc = 1.6σ). Black curve and blue curve: same
as magenta and green, respectively, but for the 4-bead flip-fixed system. All simulations
were done with systems containing 800 lipids. Inset images: two simulation snapshots of
3-bead WHZ-fixed membranes at δn0 = 0% (left) and δn0 = 10% (right), illustrating the
formation of a domain of ⊕-leaflet lipids (dark red) in the 	-leaflet (light blue) upon crossing
the critical asymmetry. Head beads are not rendered to allow clear view of the domain. The
snapshots were visualized with VMD.44

stances that add an additional energetic incentive for lipids to flip (beyond the usual en-

tropic one). Specifically, we create a membrane consisting of a single lipid type, divided into

two leaflet classes, but we impose slightly different lipid area densities by choosing different

numbers N+ and N− of lipids for the two leaflet. For the sake of being specific, let us assume

N+ > N−, which means that the ⊕-leaflet is “overfilled” and the 	-leaflet is “underfilled”.

If the whole membrane is under zero net mechanical tension, this implies that the ⊕-leaflet

is under compression while the 	-leaflet is under tension, and this creates an incentive for

lipids in the ⊕-leaflet to relax this tension by flipping into the 	-leaflet.
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We performed a set of simulations of WHZ flip-fixed Cooke lipid membranes (at the

common state point kBT = 1.1 ε and wc = 1.6σ), always choosing N+ +N− = 800, but with

increasing values for the number difference. We find it convenient to characterize the latter

with the asymmetry parameter

δn :=
N+ −N−
N+ +N−

. (5)

Figure 3 shows the outcome: the red triangles mark the average observed asymmetry 〈δn〉 as

a function of the imposed one, δn0. Initially they are identical, but already at δn0 = 3% the

distribution of observed asymmetries has an average that deviates more than one standard

deviation from the imposed one. And beyond 5% imposed asymmetry the average observed

asymmetry decreases with increasing imposed asymmetry, showing that it is impossible to

realize an actual asymmetry of more than about 3%—no matter how much one initially

overfills the ⊕-leaflet.

This result might look puzzling, and one might even wonder whether the system is in

thermal equilibrium. Once asymmetry breaks down, say beyond 5% could it be that we

simply have to wait long enough until enough lipids have flipped out of the overcrowded

leaflet and the asymmetry has decayed to zero? The answer is no, the observed asymmetries

are indeed equilibrium measurements. To understand this, it is useful to explore in a simple

theoretical model what we would expect in such a situation.

If the bilayer were symmetric, it would host N0 = 1
2
(N+ +N−) lipids in both leaflets and

have an area A0 = a`N0, where a` is the equilibrium area per lipid. (We will ignore higher

order corrections due to shape undulations.) Due to the asymmetry δn, the two leaflets

individually prefer the unequal areas A0,± = A0(1 ± δn), but they have to compromise to

the same area A, which costs the elastic energy

Estretch(A) =
1

2
KA,m

[
(A− A0,+)2

A0,+

+
(A− A0,−)2

A0,−

]
, (6)

where KA,m is the area expansion modulus of a single leaflet. If the net tension Σ =
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∂Estretch/∂A vanishes, the membrane settles at an area equal to the harmonic mean of A0,+

and A0,− and has elastic energy KA,mA0δn
2.

A break-down of imposed asymmetry means that some number ∆N of lipids move from

the overcrowded upper leaflet into the underfilled lower one. This will relax the elastic energy,

but in our model ⊕-side lipids incur an energetic penalty for being neighbor to 	-side lipids.

Ignoring entropy of mixing (which is justified at sufficiently high contact penalty), the ∆N

lipids then form a single domain of circumference C =
√

4πa` ∆N (assuming it is circular),

which has an associated line energy

Eline = γC = γ
√

4πA0(δn0 − δn) , (7)

where γ is the line tension that a domain of ⊕-lipids residing in the 	-leaflet experiences

with its 	-neighbors, and δn0 is the initially imposed asymmetry before break-down. It is

important to bear in mind that this line tension γ is an artificial one: it only arises once

asymmetry has broken down and a “wrong” domain has formed in the opposing leaflet. It is

not to be confused with physical line tensions arising in simulation due to contact between

chemically distinct lipid species. As it stands thus far, the two “different” lipid types are

merely artificial labels used to maintain asymmetry; they represent chemically identical lipids

in the two leaflets.

The total energy E = Estretch + Eline is

E(δn, δn0)

KA,mA0

= δn2 +

√
4πλ2

A0

(δn0 − δn) , (8)

where we introduced the important characteristic length

λ :=
γ

KA,m

. (9)

To find the equilibrium domain size ∆N—or equivalently, the optimal asymmetry δn that
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remains after transitioning ∆N lipids—we must minimize E with respect to δn. It is easy

to see that δn = 0 is always at least locally stable, even though ∂E/∂ δn does not vanish

there (it is a boundary minimum). Requiring the derivative to vanish then leads to a cubic

equation, the solution of which can be written succinctly using trigonometric functions.

Defining the two characteristic asymmetries

δnc :=
3

2

(
πλ2

2A0

)1/3

, (10a)

δnb := 21/3 δnc , (10b)

one finds that two new extrema arise beyond the critical asymmetry δnc,

δn±
δn0

= 1− 4

3
cos2 π ± arccos[(δnc/δn0)3/2]

3
, (11)

of which δn+ is a local maximum and δn− is a local minimum. The latter becomes a global

minimum beyond the break-down asymmetry δnb, at which point the observed asymmetry

discontinuously drops by exactly a factor of 3. The domain size at break-down is then

∆Nb = N0(δn0 − δn−)
∣∣
break-down

= N0(δnb −
1

3
δnb) = N0

(
πλ2

A0

)1/3

. (12)

Curiously, both the critical and the break-down asymmetry depend on the overall mem-

brane area A0, in such a way that it is more difficult to maintain asymmetry for larger

membranes, even though the dependence is relatively weak. Observe that γ and KA,m only

enter in the combined ratio λ = γ/KA,m, which is the single control parameter of this theory.

The magenta curve in Fig. 3 shows a fit of δn−(δn0) from Eqn. (11) to the red triangle in

the break-down regime, using λ as the single fitting parameter. The equilibrium membrane

area for the symmetric system of 800 lipids is A0 ≈ 466σ2. We find λ = (0.1± 0.01)σ and
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δnb ≈ 6%. The decline of observed asymmetry with increasing imposed asymmetry (for large

asymmetry proportional to 1/
√
δn0) is captured very well. However, the observed transition

is smeared out compared to the sharp transition, likely because the critical domain is fairly

small (∆Nb ≈ 17 in simulation, which agrees with Eqn. (12)), and we hence must expect

corrections to the line energy and fairly sizable fluctuations.

Instead of fitting λ, we can independently measure line tension γ and area modulus KA,m

in fairly straightforward simulations. For the WHZ-modified 3-bead Cooke model we find

γ = (2.3± 0.1) ε/σ and KA,m = (16± 1) ε/σ2, which leads to λ = (0.14± 0.01)σ. From this

we can predict the breakdown behavior, shown as the green curve in Fig. 3. The resulting

critical asymmetry is about 30% bigger than the one inferred from the fit, which could again

indicate difficulties with the small domain size, but overall this gives a remarkably close

prediction for when we must expect an imposed asymmetry to catastrophically fail. This

knowledge is useful in order to determine ahead of time whether a desired asymmetry δn

will be sustainable in a membrane of size A0. Eqn. (10a) implies the following upper bound

for membrane size:

A0 <
πλ2

(2 δn0/3)3
. (13)

As a side note: the lipid domain break-through we have investigated here is closely related

to the physics of pore-opening in a stressed membrane under constant strain. Indeed, the

theory we have presented here is essentially identical to the one that has previously been

developed for the pore-opening scenario.24,45,46

2.3 Improving the flip suppression

The data in Fig. 3 show that the WHZ modification of the standard Cooke model, while

in principle working, is not strong enough to maintain even a moderate differential stress—

one important way in which a bilayer could be asymmetric, and hence a reasons why one

might wish to suppress lipid flip-flop in the first place. But our theoretical model from the
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previous section indicates how to remedy this shortfall: since both the critical and the break-

down asymmetry are proportional to λ2/3 = (γ/KA,m)2/3, we can try to either increase the

line tension γ or decrease the area expansion modulus KA,m. Of those two, the expansion

modulus is a physical material parameter we might wish to independently tune, while the line

tension is only related to the artificial distinction between the two leaflet classes. Attempts

to increase γ will not (to lowest order) affect other desirable membrane properties, and so

this is the path we follow.

2.3.1 Additional repulsive interactions do not help

The line tension γ increases if we make the interaction between top- and bottom leaflet

class lipids even more unfavorable. Considering that the mid-bead attraction has already

been completely turned off, and we cannot turn off the interaction between tail-end beads

(because then the two leaflets unbind), one might try to further amplify the incompatibility

by adding an explicit repulsion. This, however, does not work, and it is instructive to see

why not.

The key point is that attractions and repulsions affect lipid configurations very differently.

Increasing the attraction between two neighboring Lennard-Jones particles lowers the energy

as much as one likes, but increasing their repulsion need not increase the energy. Instead, it

may merely push the particles further apart, and under conditions of zero applied pressure

this costs no energy (to lowest order). In the membrane case, the situation is slightly more

complicated, because even if the entire bilayer is under zero tension, a flip-event of a lipid into

the wrong leaflet still creates a differential strain between the two leaflets that costs energy.

However, the fact that a local repulsion becomes “collectivized” as a global strain implies

that the net energy change shows a strong finite size dependence. Using the elastic model

of two coupled leaflets as given in Eqn. (6), with A0,+ = (N0 − 1)a` and A0,− = N0a` + a′`,

where a′` > a` is the area a ⊕-lipid requires when it flips into the 	-leaflet, we find that the

overall energy change of such a flip is proportional to 1/A0. And while the WHZ fix itself
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Figure 4: Interaction matrix between all beads of the two classes of a 4-bead flip-fixed Cooke
model. Beads 1,2, and 3 belong to the ⊕-lipid class (i.e., upper leaflet), beads 4, 5, and 6
belong to the 	-lipid class (i.e., lower leaflet). Bead types 1 and 4 are lipid heads. In the
table, the upper row indicates the bead-bead interaction size parameter b (from Eqn. (3)) in
units of σ, the lower row indicates whether an attractive interaction is turned on. Turning
off the attractions between bead types 2 and 5 constitutes the WHZ flip-fix.

also has a finite size effect, as seen in Eqn. (10) and Eqn. (12), the resulting exponent is

much weaker (−1/3 as opposed to −1). Even worse, this repulsion-induced energy change

of a ⊕-lipid flipping into the 	-leaflet is entirely undone if additionally a 	-lipid flips into

the ⊕-leaflet. Instead of penalizing two incorrectly placed lipids, this pair exchange cancels

the cost due to repulsive interactions. Working with repulsions is not the way to go.

2.3.2 Adding one more bead to the Cooke model

We instead provide ourselves some extra material to work with by augmenting our coarse-

grained lipids with an additional tail bead. With four beads per lipid, we now have two

middle beads whose cross-type interactions can be modified, allowing us to more than double

the energy penalty for neighboring opposite-type lipids by removing their cohesive interaction

energy as in the WHZ modification. Figure 4 diagrams the interactions defined between the
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different bead types of our four-bead lipids.

The original Cooke model used a harmonic potential between head and tail beads in

place of a bond angle potential in order to maintain an approximately linear configuration

of the beads. When extending the model to include a fourth lipid bead, this potential is still

present between the first (head) bead and the third bead, as well as duplicated between the

second bead and the fourth (final tail) bead.

Adding an additional bead to each lipid increases the attractive cohesion between neigh-

boring lipids of the same type. As such, if one simulates this four-bead model at the same

temperature kBT = 1.1 ε that has become standard for fluid Cooke membrane simulations

with wc = 1.6σ, one discovers that the membrane is thoroughly in the gel phase. Addition

of a fourth bead hence requires a move to a new state point representative of the fluid phase.

We find that kBT = 1.4 ε (at wc = 1.6σ) is at a high enough temperature to bring us above

the gel transition, while simultaneously permitting large values of the asymmetry parameter

δn.

The black circles in Figure 3 show the measured values of asymmetry for this state

point plotted against the imposed asymmetry. The membrane maintains nearly perfect

asymmetry at the imposed value of δn0 all the way up to 11%, while beyond that point the

flip-suppression breaks down, as seen for the δn0 = 12% and 13% state points. Asymmetries

this high are already well beyond what is believed to be of biological relevance. However,

it is reassuring that the model can be pushed beyond what is necessary, knowing that a

simulation is not on the verge of model failure and asymmetry break-down. To this end, we

also measured the line tension γ = (6.7±0.2) ε/σ and area modulus KA,m = (19.9±0.7) ε/σ2

in order to use Eqn. (10) to predict an approximate break-down threshold for our new setup.

Based on these measurements we find δnc ≈ 11% and δnb ≈ 14% for the 800 lipids system

shown in Figure 3. More generally, we can use Eqn. (13) to predict that the area for which

an imposed symmetry δn0 remains stable is limited to A/σ2 . δn−3
0 . Notice, though, that

the breakdown threshold predicted in this way appears to be slightly larger than the true
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value observed for both systems investigated here, as made clear in Figure 3.

2.4 MD Simulations

Molecular dynamics simulations were performed using the ESPResSo package.47 Constant

temperature simulations were carried out using a Langevin thermostat with a friction con-

stant of Γ = 1.0 τ−1 and a time step δt = 0.005 τ . Constant tension simulations were

performed using a modified Andersen barostat48 allowing isotropic box size changes only in

the x- and y-directions. For constant-tension simulations in the vicinity of the gel transition

temperature, a rectangular box with length equal to twice its width was used, with box size

changes allowed only along the long direction of the box.

2.5 Mapping of coarse-grained scales to real units

When simulating a coarse-grained representation of a physical system, the exact meaning of

length- and especially time-scales requires a mapping onto the physical unit scale by way of

comparing suitable observables of the coarse-grained representation to the real system. This

is usually not a problem for “length” or “mass”, since the size or mass of a coarse-grained

unit can be directly matched to the real-world structure it is supposed to represent. Not

so for “time”. Formally, we have a coarse-grained time unit τ in a simulation that can be

translated into SI units via the equation τ = L
√
M/E, where {L,M,E} are the length-,

mass-, and energy-units in a simulation (all of which are straightforward to map). And while

this unit is appropriate for “instantaneous” observables that still require the notion of time

(such as the kinetic energy), it does not correctly describe the long-time dynamics of the

coarse-grained system.

The deeper issue with dynamical observables is that statistical partition functions, and

hence free energies, are agnostic about time, and even if the coarse-grained system has been

constructed so as to reproduce thermal equilibrium, this does not guarantee that it inherits

any meaningful notion of time in the process. Indeed, it cannot, because specifying an energy

18



functional does not also specify the equations of motion one wishes to solve. Hence, time-

mapping tends to be done explicitly afterwards, by observing a particular dynamical process

of interest, quantifying it via the “näıve” time unit τ , and then matching this to the SI scale

by comparing it to the actual situation.

Let us make a concrete example. The standard Cooke model (at kBT = 1.1 ε and

wc = 1.6σ; see Sec. 2.1 for the definition of those parameters) has an area per lipid of

a` = 1.2σ2.24 Equating this to a typical experimental value of a` = 0.65 nm2 gives the length

mapping σ = 0.74 nm. The model also has a diffusion constant of D ≈ 0.02σ2/τ (under

Langevin dynamics with a friction constant of Γ = τ−1).24 If we näıvely take τ from the bare

mapping τ = σ
√
M/ε (using 3M = 800 Da, the mass of a typical lipid) we find τ ≈ 8 ps and

hence D ≈ 1400 µm2/s—which is much larger than what is found experimentally for ordinary

fluid-phase lipids: D ∼ 5 µm2/s.49 This is what is meant by “CG dynamics is sped up”. A

better approach is to map τ by insisting that a CG dynamic variable, such as the diffusion

constant, agrees with its experimental counterpart. In the present case this yields the much

longer time unit τ ' 2 ns. The problem with this strategy is that the dynamical process to

be used for mapping is not unique. For instance, the Cooke model also exhibits lipid flip-

flop, with a rate determined to be rf ≈ 1.32× 10−4τ−1.24 Together with the diffusion-based

time mapping this implies a rate in SI units of rf ' 6.6× 104 s−1, or a characteristic time

for flip-flop of 15 µs. Since the actual time is at least several hours, the flip-flop rate is too

large by at least nine orders of magnitude. This is what is meant by “different dynamical

processes are sped up differently”.

As a side note, there is a way to claim flip-flop is sped up without having to actually

map time to SI units, and that is to divide out the two time scales of flip-flop and diffusion.

One way to do this is to answer the question, “how far does a lipid on average diffuse

before it flips?” The answer is ∆xf =
√

4D/rf, an expression in which the time units in D

and rf cancel. Using the experimental values D = 5 µm2/s and taking r−1
f = 1 d, we get

∆xf = 1.3 mm. With the simulation parameters D = 0.02σ2/τ and r−1
f = 104τ we instead
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find ∆xf ≈ 28σ ≈ 21 nm. We hence see that in experimental systems the flip-diffusion length

is about 60 000 times larger than for the 3-bead Cooke model.

3 Results

3.1 Measured Observables

As this model is to be used to carry out simulations similar to those performed by the

original Cooke model, with the added ability to support differentially-stressed membranes,

we collect in Table 1 a brief comparison of common observables of interest for the original

Cooke model and the 4-bead flip-fixed modification at the chosen state for fluid simulation.

Brief explanations of the methods used to calculate these values are given in the Supporting

Information. This table does not contain every single observable ever measured for the Cooke

model, and so we wish to emphasize that if an observable is not listed, this is not meant to

imply that its value is identical between the two models. Keep in mind that the observables

in Table 1 all come from simulations of symmetric membranes, such that a meaningful

comparison between the two models can be made. Upon the introduction of asymmetry in

the new model, some of these values will change, and indeed be different between the two

leaflets of the bilayer.

Given that the most obvious structural change of our new model is its increased thickness,

it is instructive to see how much of the changed elastic behavior can be attributed to this.

Simple continuum thin-plate theory states that the area modulus KA,m can be expressed

in terms of the Young’s modulus E, the monolayer thickness d/2, and Poisson ratio ν as

KA,m = Ed/4(1−ν).51 Assuming that E and ν are approximately the same in the two models,

the ratio between the two area moduli is simply determined by the ratio of the two leaflet

thicknesses. More precisely, we find a factor of (d4/d3) × (kBT3/kBT4) = (6.328/4.372) ×

(1.1/1.4) ≈ 1.14, yielding a prediction of KA,m ≈ 13.8 kBT/σ
2 for the area modulus of

our new model. The factor of 1.1/1.4 enters from the conversion of kBT units due to the
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Table 1: Comparison of observables in the original 3-bead Cooke model and the 4-bead
flip-fixed Cooke model. Material properties for original Cooke are given at kBT = 1.1 ε,
and properties for the four bead model are given at kBT = 1.4 ε; both use wc = 1.6σ.
The observables are: Tgel: gel transition temperature; d: head-to-head bilayer thickness; a`:
area per lipid; KA,m: area expansion modulus for a single leaflet; κ: curvature modulus; `:
curvature softening length (see Eqn. (SI 1)); κt,eff: effective tilt modulus (see Eqn. (SI 4));
P2: lipid order parameter (see Eqn. (SI 7)); γ: line energy for a domain of lipids belonging
to the wrong leaflet (see Eqn. (7)); ηK : strain dependence of area modulus (see Eqn. (19b));
D: lipid (self) diffusion constant; rf: flip-flop rate.
† Determined from fluctuation spectra.
‡ Determined from buckling.
§ This includes the WHZ modification.

observable units original Cooke modified Cooke

kBTgel ε 0.95± 0.0324 1.32± 0.01

d σ 4.372± 0.002 6.328± 0.001

a` σ2 1.206± 0.001 1.163± 0.001

KA,m kBT/σ
2 12.1± 0.4 14.2± 0.1

κ† kBT 12.5± 130 30.9± 0.2

κ‡ kBT 13.8± 0.450 31.5± 1.9

` σ 4.7± 0.850 10.7± 1.8

κt,eff kBT/σ
2 n.d. 11.9± 0.4

P2 1 0.73± 0.01 0.82± 0.01

γ ε/σ 2.3± 0.1§ 6.7± 0.2

ηK 1 n.d. 1.96± 0.03

D 10−2σ2/τ 1.85± 0.05 1.69± 0.05

rf 10−4/τ 1.32± 0.02 N/A

models being simulated at different temperatures. This is fairly close to the true measured

value shown in the table. A similar line of reasoning, this time exploiting the continuum

relation κ = Ed3/(48(1 − ν2)), shows that (at fixed E and ν) the bilayer bending modulus

is proportional to the cube of the bilayer thickness, leading to the prediction that our new

model’s bending modulus should be approximately 2.4 times larger than that of the original

Cooke model. Taking a rough value of 13 kBT for the original Cooke modulus, this gives

κ ≈ 31 kBT for the new one—remarkably close to the actual measurement. While these

simple arguments ignore many details, they do suggest that the changes in KA,m and κ are

mostly associated with the change in thickness that resulted from adding one more bead.
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Let us take the time and briefly map some of the 4-bead coarse-grained observables in

that table into SI units. We begin with length, which we map to the area per lipid. Its

value depends on lipid type, but a reasonable average value is 0.65 nm2. Setting 1.16σ2 =

a` = 0.65 nm2, we get σ ' 0.75 nm. This would imply a bilayer thickness of d = 6.328 ·

(0.75 nm/σ) = 4.75 nm. Since this thickness is measured from head bead to head bead,

it is appropriate to compare it to experimental phosphate-phosphate bilayer thicknesses.

Our membrane then appears to be thicker than most common lipid bilayers, although it

is thinner than DNPC bilayers.52 Using the thermal energy as the point of reference for

energy mapping, we get ε ' kBT/1.4. If we for instance pick the temperature in kBT to

correspond to body temperature, Tb = 310 K, this implies that the gel transition happens

at Tgel = (1.32/1.4)Tb = 0.943Tb = 292 K = 20 °C.

Having mapped length and energy, we can now translate the monolayer expansion mod-

ulus: KA,m = 19.9 ε/σ2 = 14.2 kBTb/σ
2 = 108 mN/m. This gives KA = 216 mN/m for the

bilayer expansion modulus, which is only about 10% smaller than the value found for a

wide range of phospholipids.53 For the effective tilt modulus we get κt,eff = 11.6 kBTr/σ
2 =

88 mN/m, but we cannot easily compare this to the actually measured tilt modulus due to

corrections related to its “effective” nature (see Ref.54,55 for details). But to see that the

order of magnitude is meaningful, we note the tilt modulus of DOPC (dioleoylphosphatidyl-

choline) at 30 °C was recently determined to be κt = 95 ± 7 mN/m,56 and probing a wider

set of lipids indicates that the modulus varies between about 40 mN/m and 100 mN/m.57

Finally, we can map time via lipid self diffusion, using a common value for the diffusion

constant of 5 µm2/s.49 From 1.69× 10−2 σ2/τ = D = 5 µm2/s and our previous length scale

mapping we get τ ' 1.9 ns. Given the difficulties of time-mapping, and the range of real

diffusion constants, this should best be taken as merely an order-of-magnitude estimate.
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3.2 Applications

Having described our method for suppressing flip-flop and demonstrating its effectiveness,

we now provide two example applications which illustrate simulations that were inaccessible

to the original Cooke model.

3.2.1 Determining KA,m from the lateral stress profile

An important physical object from which many useful observables can be calculated is a

membrane’s lateral stress profile.58 Consider a flat, laterally homogeneous membrane span-

ning the xy-plane with its normal along the z-direction. The stress tensor σij is evidently

diagonal in these coordinates, and due to translational symmetry can only depend on z. The

lateral stress profile is then defined as

σ(z) =

〈
1

2

[
σxx(z) + σyy(z)

]
− σzz(z)

〉
. (14)

Mechanical stability requires 〈σzz(z)〉 to be constant and hence equal to the bulk pressure59

(which is zero in our solvent-free coarse-grained model). This provides a good check for the

stress calculation.

We measure σ(z) in simulations using the Irving-Kirkwood formalism, as presented in

great detail by Hardy,60,61 with the exception that the kinetic contribution to the stress tensor

is replaced by its equilibrium average value. In order to ensure that z = 0 corresponds to the

bilayer mid-plane, care must be taken when defining the coordinate system. Simply using

the bilayer center of mass as the origin of z would result in z = 0 being located within the

tail region of the over-filled leaflet, rather than at the interface between the two monolayers.

In our analysis the mid-plane is determined by averaging the z-positions of the final tail

beads of the lipids in each leaflet separately, and then taking the midpoint between the two

resulting values. The lateral stress is evaluated at 61 evenly spaced points in the z-interval

from −5σ to 5σ, and the error on these values is calculated via blocking.62 Figure 5 shows a
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Figure 5: Lateral stress profile as a function of transverse coordinate z in a flat asymmetric
Cooke membrane. Each curve corresponds to a different amount of asymmetry, with the
symmetric (δn= 0, purple) and largest asymmetry (δn≈ 8%, red) cases being shown darker
than the intermediate values. The bilayer mid-plane is located at z = 0. As asymmetry
increases, lipid number decreases in the lower leaflet (negative z values) and increases in the
upper leaflet (positive z values).

sequence of lateral stress profiles, determined from simulations of a flip-fixed 4-bead Cooke

model membrane with 256 lipids in total and an increasing asymmetry δn, under conditions

of overall vanishing bilayer tension—meaning, a vanishing integral of σ(z). As was true

for the standard Cooke model, this stress profile again looks “flipped” compared to more

realistic lipid models, since bilayer cohesion is driven by tail attraction, while the head groups

repel. This yields a positive (i.e., attractive) stress in the tail regions and two negative (i.e.,

repulsive) peaks near the positions of the heads. The most obvious asymmetry-induced

changes to the stress profile occur in that head region: the overfilled leaflet (positive z)

experiences increasingly stronger head repulsions, while these correspondingly decrease in

the underfilled leaflet (negative z), as illustrated by the arrows in Figure 5. Weaker trends

along the same lines are seen in the tails. A closer look also reveals that the compressed

leaflet slightly increases in thickness, while the expanded leaflet thins. This is expected based

on volume conservation, which holds almost perfectly for real bilayers.63

Moments of this stress profile can be related to a variety of curvature elastic moduli and

quantities of interest.54,55,64–66 Here we will merely examine the zeroth moment (i.e., the
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integral of the stress profile), but restricted to individual leaflets, in order to measure the

monolayer area modulus KA,m in a way that was not possible in the original Cooke model,

and which does not require stretching the entire membrane.

From Eqn. (6) we see that the elastic energy E± of an individual ⊕- or 	-leaflet is given

by

E±(A) =
1

2
KA,m

(A− A0,±)2

A0,±
, (15)

and therefore the lateral mechanical tension is

Σ±(A) =
∂E±(A)

∂A
= KA,m

A− A0,±

A0,±
. (16)

As mentioned before, the condition of zero overall bilayer tension combined with the coupled

bilayer energy in Eqn. (6) tells us that the membrane area A will relax to the harmonic

mean of A0,+ and A0,−. If we substitute this into Eqn. (16) and write the area in terms of

δn, we arrive at a very compact expression for the tension in an individual monolayer of an

asymmetric membrane under conditions of zero bilayer tension:

Σ±(δn,Σ = 0) =

(
∂E±
∂A

)
Σ=0

= ∓KA,mδn . (17)

By integrating the measured stress profile in simulations of membranes under zero tension

and varying asymmetry, we can therefore extract the monolayer area modulus through a

simple linear fit, as is shown in Figure 6. The error bars for each monolayer tension value

are determined by integrating resampled stress profiles for the corresponding asymmetry

value. We find a value of KA,m = (19.8± 0.2) ε/σ2.

We note in passing that this procedure directly measures the area modulus of the mono-

layer, instead of inferring it from the bilayer modulus. This is potentially interesting in light

of recent work that has cast doubt on the relation KA = 2KA,m.67 But since we independently

find 1
2
KA = (20.8 ± 0.7) ε/σ2 from a bilayer stretching experiment, our two measurements
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are entirely compatible with the common notion that leaflet stretching moduli simply add.

(The probability that the observed difference happens by chance is about 17%, determined

by integrating the tails of the distribution of the difference between our two measurements,

assumed to be Gaussian.)
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Figure 6: Monolayer surface tension Σ+/− as a function of bilayer asymmetry δn. Each
data point is obtained by integrating half of the corresponding stress profile shown in Fig. 5.
Underfilled and overfilled monolayers are plotted with negative and positive δn values, re-
spectively.

3.2.2 Bilayer resting area as a sensitive probe of the strain-dependent area

modulus KA,m

Consider again the simple stretching energy for a bilayer, Eqn. (6). Minimizing it with

respect to area yields the equilibrium (or “resting”) area Aeq of the membrane as a function

of asymmetry δn, and from this we get the relative area change with respect to the symmetric

resting area A0:

α :=
Aeq − A0

A0

= −δn2 . (18)

However, Fig. 7 shows that this qualitatively disagrees with our observation for the 4-bead

flip-fixed Cooke model: instead of shrinking, the area increases with asymmetry.

To understand this disagreement, notice that the predicted effect is actually quadratic.
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Figure 7: Filled Circles: Measurements of relative area change α for the asymmetric Cooke
model at kBT = 1.4 ε. Solid Line: Fit to Eqn. (20).

To linear order, the asymmetry induced compression in the overfilled leaflet precisely cancels

the tension in the underfilled one, leaving the area unchanged. The expansion observed in

Fig. 7 must therefore result from higher order corrections that are missing in our simple

theory. Indeed, our equation assumes that both the compressed and the tense leaflet still

have the same stretching modulus KA,m, but it seems plausible that the compressed leaflet

becomes stiffer, and the tense leaflet become softer. This correction beyond a lowest-order

Hookean behavior would shift the area balance in favor of expansion. To account for this,

let us permit the area modulus to depend on leaflet strain, u± ≡ (A± − A0,±)/A0,±:

KA,m±(u±) = KA,m,0 +KA,m,1u± + · · · (19a)

= KA,m,0

[
1− ηKu± + · · ·

]
, (19b)

where we have defined the dimensionless coefficient ηK = −KA,m,1/KA,m,0, which quantifies

the strength of the first nonlinear correction to the leading order Hookean behavior. The sign

is chosen such that overcrowding (which corresponds to a negative strain) leads to stiffening

if ηK is positive.

If we replace KA,m in Eqn. (6) with KA,m± from Eqn. (19b), we find the leading order
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relative area expansion

α =

(
3

2
ηK − 1

)
δn2 +O(δn4) . (20)

For ηK = 0 this of course reduces to Eqn. (18), and as long as ηK < 2/3, the bilayer

area still shrinks when an asymmetry is introduced, even though less strongly. This means

that reversing the “näıve” trend requires a minimum amount of nonlinearity. Fitting the

expansion observed in Fig. 7 to the prediction from Eqn. (20), we find ηK = 1.96± 0.03 for

the flip-fixed 4-bead Cooke model (at kBT = 1.4 ε and wc = 1.6σ).

Observe that the fit works remarkably well, and it permits us to determine a subtle

nonlinear correction at a percent-level accuracy, using very simple measurements. One might

worry that this really proves the correction to be quite large, which in turn might cast doubt

on our modeling of the monolayer tension in Eqn. (16), which ignored the nonlinearity.

However, Eqn. (17) shows that the lowest order in the monolayer tension Σ± is linear in

the asymmetry, while for α it is quadratic. Whatever nonlinear correction for Σ± exists, it

needs to compete with a potentially much larger linear term. Indeed, our refined nonlinear

theory predicts

Σ± = ∓KA,mδn

[
1− 3

2
ηK(3ηK − 1)δn2 +O(δn4)

]
. (21)

At the largest asymmetry we studied, δn = 8%, the subleading correction term in Eqn. (21)

(technically: cubic in δn) is approximately 10% of the leading linear term. Curiously, the

quadratic area change term in Eqn. (20) is even smaller, approximately 1%, and hence about

ten times smaller than the relative correction to the stress. But it need not compete with a

lower order; it is the lowest order. Combining this with the common experience that it is easy

to measure lipid areas very precisely, while membrane stress is a much more noisy observable,

we conclude that quantifying the asymmetry-induced bilayer area change is a highly sensitive

measurement of the small nonlinear correction in a membrane’s area expansion behavior.
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4 Discussion and Conclusion

We have presented an extension of the classical Cooke model23,24 for coarse-grained simula-

tions of lipids, which combines the ease and efficiency of the original model with the ability

to maintain lipid asymmetry, even under conditions of substantial differential stress. Since

the conceptually straightforward attempt to raise the free energy barrier for flip-flop is not

viable for highly coarse-grained models, we instead follow the original proposal by Wang

et al.:27 pre-assign a leaflet-identity to every lipid and then penalize the energy of lipids

venturing into the wrong leaflet.

The WHZ fix is successful, but only up to fairly moderate differential stress. We ex-

plained why rendering interactions in the wrong leaflet even more unfavorable by adding

extra repulsive forces does not work, and hence instead added a fourth bead to the lipid,

which allows bigger energy differences between lipids in the right and in the wrong leaflet.

As a consequence, lipid density asymmetries of up to 10% can be reliably maintained, which

is likely large enough for any practical applications.

The additional CG bead of course changes the model strongly enough such that all

parameters previously determined for the 3-bead Cooke model change upon transitioning to

the 4-bead flip-fixed version. For this reason, it made little sense to tune the state point

(in terms of kBT/ε and wc/σ) such that some parameters (say, area per lipid, or bending

rigidity) are preserved, since not all parameters could be similarly matched. Instead, we

have re-measured the set of most frequently needed physical observables (see Tab. 1), so

that future users have them readily available (or could check their code implementations

against our numbers).

The model remains easy to implement and work with, as it relies exclusively on pair

forces. This, in particular, simplifies the calculation of stresses, since the standard virial

suffices, and more subtle questions for how to parse out multibody interactions (such as

bending potentials or dihedrals) can be avoided.

The additional bead slightly increases the computational cost, and there are two ways
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how to quantify this. In units of coarse-grained time we observe that it takes about 68%

longer to simulate a given number of τ . Alternatively, if we wish to roughly map this to SI

units by matching lipid self diffusion, the slightly smaller diffusion constant of the 4-bead

model (D4b = 1.69 × 10−2 σ2/τ vs. D3b = 1.85 × 10−2 σ2/τ) gives another factor of 1.095

during time mapping, meaning that one needs to simulate 74% longer to simulate a given

number of seconds. If maintaining asymmetry is crucial for the problem at hand, then this

moderate increase is worth paying, and it is still much less than the alternative of using

more highly resolved lipid models (such as MARTINI68) which, by virtue of their higher

resolution, automatically have a lower flip-flop rate.

We illustrated the possibilities opened by such a model with two simple applications.

First, we showed how to directly determine the monolayer area expansion modulus KA,m (i.e.,

without just assuming it is half the bilayer expansion modulus KA), which hence allowed

us to independently verify that KA = 2KA,m. And second, we showed that measuring the

change of bilayer area with lipid number asymmetry δn affords a highly sensitive means to

assessing the strain dependence of the expansion modulus, i.e., the non-Hookean corrections

to area strain elasticity.

Many other applications are conceivable. For instance, creating different lipid types by

introducing differences in cohesion energy or -range permits the study of phase separation,37

and in an asymmetric system this allows one to study the conditions under which nonideal

mixing in one leaflet imprints onto the other. This is a highly relevant question for cellular

plasma membranes, which are known to have phase separation potential in their outer leaflet,

but the consequences of this (say, protein sorting and co-localization) are mostly believed to

play out on the inner leaflet. Changing the relative sizes of head versus tail beads permits the

introduction of bilayer curvature (the original application of the WHZ modification27), and

this also opens a window onto the subtle interplay between curvature, differential stress, and

residual tension, as recently discussed in Ref.28 Membranes can also stiffen in the presence

of differential stress,28 a phenomenon that appears to be related to, but not identical with,
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the gel transition, and the ability to collect more statistics in highly coarse-grained models

(together with the opportunity to verify the generality of such a claim in an even simpler

model) might teach us more about the way in which elasticity and phase behavior are coupled

in asymmetric membranes. We hope that the model we have introduced here will be a useful

computational tool for answering these and many other questions that rely on a sufficiently

slow flip-flop rate.

Acknowledgement

MD gratefully acknowledges support by the National Science Foundation under grant CHE

1764257. SF gratefully acknowledges support from the Pittsburgh Chapter of the ARCS

Foundation.

Supporting Information Available

Here we describe numerous details on several computational procedures for determining

lipid membrane observables, in particular: area per lipid; gel transition temperature; bend-

ing modulus; area expansion modulus; orientational order parameter; line tension between

opposite leaflet lipids; diffusion constant; and bilayer thickness.

References

(1) Lodish, H.; Berk, A.; Kaiser, C. A.; Krieger, M.; Bretscher, A.; Ploegh, H.; Amon, A.;

Martin, K. C. M. Molecular Cell Biology, 8th ed.; W.H. Freeman: New York, NY, 2016.

(2) van Meer, G. Dynamic transbilayer lipid asymmetry. Cold Spring Harbor perspectives

in biology 2011, 3, a004671.

31



(3) Kobayashi, T.; Menon, A. K. Transbilayer lipid asymmetry. Current Biology 2018, 28,

R386–R391.

(4) Lorent, J. H.; Levental, K. R.; Ganesan, L.; Rivera-Longsworth, G.; Sezgin, E.; Dok-

torova, M.; Lyman, E.; Levental, I. Plasma membranes are asymmetric in lipid unsat-

uration, packing and protein shape. Nature Chem. Biol. 2020, 16, 644–652.

(5) Contreras, F.-X.; Sánchez-Magraner, L.; Alonso, A.; Goñi, F. M. Transbilayer (flip-flop)
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