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Here we present brief explanations of how observables
were calculated from simulations.

A. Area per lipid

The area per lipid a` is determined by simulating small
bilayer patches of 128 lipids under conditions of zero ten-
sion and measuring the average projected area (i.e., box
size). Area measurements are done on small systems like
this in order to avoid the effect of large membrane undu-
lations contributing to a difference between frame area
and total membrane area.

B. Gel Transition Temperature

To determine the approximate location of the fluid-
gel transition temperature, initially two simulations were
carried out in which the temperature was dynamically
varied during simulation, either warming or cooling the
system at a rate of 10−6 ε/kBτ . The area per lipid is
a convenient reporter of the phase transition due to the
abrupt ∼ 10% change in area as the system either melts
or gels. The warming simulation was started from a
gel state and heated until a melting transition was ob-
served. For the other, the reverse simulation was per-
formed, starting from fluid and cooling until a gel tran-
sition was observed. The downside of this technique is
that it exhibits fairly pronounced hysteresis.

To circumvent this problem, we carried out constant-
temperature simulations at evenly spaced points within
the region of hysteresis. These simulations were per-
formed with 800 lipids in an anisotropic box of side
lengths Lx = 2Ly which is allowed to fluctuate only in the
x-direction. These simulations tended to relax rapidly to
either the fluid or gel state, except in the vicinity of the
transition around kBT ≈ 1.322 ε. In these simulations it
was seen that the membrane area fluctuated significantly
as compared to neighboring temperatures. Figure SI 1
shows the traces of area per lipid versus time for a few
of these simulations.
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C. Bending modulus

We determined the bending modulus using two differ-
ent methods—an active and a passive one. The first (ac-
tive) one is through the simulation of buckled membrane
strips, as described in [1, 2]. However, in our analysis we
also take into account the possibility of curvature soften-
ing, as empirically modeled in [3], because the curvatures
arising during bucking of small membrane patches turn
out to be high enough for this to be statistically observ-
able even for fluid membranes. If K is the membrane’s
local extrinsic curvature (the sum of its two principal
curvatures [4]), the theory posits an empirically softened
curvature energy density of the form
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which amends the usual quadratic curvature energy
1
2κK

2 [5] by a negative (i.e., softening) quartic term,
while still being overall convex and bounded below. In
this expression κ is the bending modulus of the bilayer
and ` is the curvature softening length scale, a material
parameter. This yields a series expansion for the stress-
strain relation given by [3]
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where γ = (L−Lx)/L is the dimensionless buckling strain
and δ = 2π`/L is a dimensionless softening parameter.
We amend this by a fluctuation correction in the stress-
strain analysis as described in [2],

δFx = −3kBT

2L

∞∑
n=0

dnγ
n , (SI 3)

in which the coefficients dn = 2
3 [(n+ 2)bn − (n+ 1)bn+1]

are defined in terms of the prefactors bn of the γn terms
in Eqn. (SI 2). We use buckles of 1342 lipids inside
an elongated box of fixed width Ly = 12σ and a length
Lx determined by γ and the resting length L, which we
measure first in a box with zero tension along Lx.

The second method is a classical fluctuation analysis of
a flat membrane. We fit the height fluctuation spectrum
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FIG. SI 1. Four traces of area per lipid in symmetric simulations of the four bead flip-fixed model at temperatures near Tgel.
From left to right the temperatures correspond to kBT/ε =1.315, 1.32, 1.322, and 1.325.
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FIG. SI 2. Example of a fluctuation spectrum used to cal-
culate κ, κt,eff, and qc. Black dotted curve shows fit to Eqn.

(SI 4) which includes a divergence at q =
√

−Σ/κ due to
a small residual compressive tension, with the dashed verti-
cal segment indicating the asymptote. The blue dotted curve
shows the fit to Eqn. (SI 4), except that Σ is artificially set
to zero after fitting, showing that the residual tension only
affects the lowest few modes.

of our simulated membrane to the result of the theory by
Terzi et al. [6, 7], amended by an additional tension:

〈|hq|2〉 =
1

1− (q/qc)2

[
kBT

κq4 + Σq2
+

kBT

κt,effq2

]
. (SI 4)

In this expression qc is a critical wave vector of soft mode
divergence, κ is the bending modulus, Σ is the lateral
tension, and κt,eff is an effective lipid tilt modulus. We
simulate 4316 lipids in a square membrane using a fixed
side length of approximately 50σ, determined by first
finding the box size at which the membrane tension van-
ishes. 5000 equally spaced snapshots were collected along
a trajectory of total length 100 000 τ , and errors in the

fluctuation amplitudes were determined by blocking [8].
Figure SI 2 shows one such fluctuation spectrum along
with the fit to Eqn. (SI 4). The maximum wave vector we
fit to is qmax ≈ 0.764σ−1. We used the set {κ, κt,eff, qc}
as fitting parameters, but determined Σ by measuring
the (small) value of the lateral stress directly from the
pressure tensor of the simulation box.

D. Area expansion modulus

We find the area expansion modulus KA by simulating
the same type of small patches used to measure a` (128
lipids—see Sec. A), but not just at zero tension. A range
of fixed areas near the relaxed state are studied, and
their lateral tension is measured as a function of area.
Ignoring fluctuation corrections (which is legitimate for
small patches), the elastic energy of stretching for such a
situation is given by

EA =
1

2
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)2

. (SI 5)

If a = A/N is the area per lipid, and a` the resting area
per lipid, then the mechanical tension Σ in the membrane
is given by

Σ(a) =
∂EA

∂A
= KA

(
a

a`
− 1

)
, (SI 6)

an expression from which both a` and KA can be readily
extracted.

E. Orientational order parameter

The orientational ordering of the lipid molecules in the
membrane is quantified by measuring the P2 order pa-
rameter. If we consider a flat membrane in the xy-plane,
then the orientation of each lipid has an instantaneous
deflection θ away from the (average) membrane normal,
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FIG. SI 3. Membrane simulation setup used to measure the
line tension γ which arises at the contact between unlike lipid
domains in the flip-suppressed model. To distinguish the two
different lipid types, the two middle beads of the different
species are rendered as dark red and light blue. Head beads
are drawn as colorless semi-transparent spheres, and final tail
beads are dark purple. The total number of lipids is 800.

which here is just the z-direction. The P2 order parame-
ter essentially measures the degree of alignment implied
by the underlying angular distribution function, and to
account for the Jacobians of spherical symmetry, it is
convenient to measure the ensemble average of the sec-
ond Legendre polynomial of argument cos(θ),

P2 :=
〈
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(
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)〉
=
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2

〈
3 cos2(θ)− 1

〉
. (SI 7)

This takes on a value of 1 for a perfectly ordered sys-
tem of crystalline lipids oriented normally to the bilayer
plane, and a value of 0 for completely random orienta-
tions. We measure this in simulations of 800 lipids in a
square membrane under conditions of zero tension.

F. Line Tension between opposite leaflet lipids

In order to measure the line tension γ produced at the
contact line between two unlike lipid domains in the flip-
suppressed model, we simulate a membrane as shown in
Figure SI 3. The lower leaflet is entirely filled with one
lipid type (say, the 	-type), while the upper leaflet con-
tains an equal amount of ⊕- and 	-type lipids, arranged
in two stripes as shown in the figure. The simulation box
length is fixed in the direction parallel to the two contact
lines, such that their length remains fixed. The box is
allowed to fluctuate in the direction perpendicular to the
lines to allow area equilibration at zero membrane ten-
sion. Observe that one leaflet has two unfavorable con-

tact lines, while the other one has none, and so a state
with an equal number of lipids on both sides need not be
free of differential stress. However, half of the membrane
area consists of a region where both the upper and the
lower leaflet consist of 	-type lipids, and in that region
lipid flip-flop is not suppressed, which permits a potential
differential stress to relax.

The free energy of the system is lower for shorter con-
tact lines, and therefore a tension arises in the direction
parallel to these lines. If one writes the stress tensor for
this system in Cartesian components where the y-axis is
parallel to the lines, one finds

σyy =
2γ

LxLz
. (SI 8)

We therefore measure 〈σyy〉 in simulation using
ESPResSo’s volume-averaged stress tensor routine and
use Eqn. (SI 8) to extract the value of γ.

G. Diffusion Constant

Diffusion processes in two dimensions follow the rela-
tion 〈

[r(t+ ∆t)− r(t)]2
〉

= 4D∆t, (SI 9)

where r(t) is the position vector of a particle at time t, ∆t
is the time difference over which we assess its diffusion,
and D is the diffusion constant. In our case, the system
is not truly 2-dimensional, so r(t) is the projection of the
lipid position vector onto the bilayer plane.

We take the average on the left side of Eqn. (SI 9) over
each lipid in our membrane as well as over each pair of
simulation configurations separated by ∆t in our output
trajectory, with error bars computed by blocking [8]. By
doing this calculation for 500 values of ∆t ranging from
100 τ to 20,000 τ , we can fit the results to a line of slope
4D to determine the diffusion constant over this time
interval. These calculations were performed on a system
containing 2,000 lipids in a fixed-size square box with
Lx = Ly = 34.05σ simulated for 100,000 τ .

H. Bilayer Thickness

For our simple lipid models, we define the bilayer thick-
ness as the mean difference in position perpendicular to
the bilayer plane between the head beads of lipids in the
upper and lower leaflets. These averages were performed
on the same simulation trajectories used to measure the
lipid orientational order parameter, containing 800 lipids
and under conditions of zero bilayer tension.
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